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a b s t r a c t

This article introduces a computational method based on the Jk-integral for mixed-mode fracture analysis
of orthotropic functionally graded materials (FGMs) that are subjected to thermal stresses. The general-
ized definition of the Jk-integral is recast into a domain independent form composed of line and area inte-
grals by utilizing the constitutive relations of plane orthotropic thermoelasticity. Implementation of the
domain independent Jk-integral is realized through a numerical procedure developed by means of the
finite element method. The outlined computational approach enables the evaluation of the modes I
and II stress intensity factors, the energy release rate, and the T-stress. The developed technique is vali-
dated numerically by considering two different problems, the first of which is the problem of an embed-
ded crack in an orthotropic FGM layer subjected to steady-state thermal stresses; and the second one is
that of periodic cracks under transient thermal loading. Comparisons of the mixed-mode stress intensity
factors evaluated by the Jk-integral based method to those calculated through the displacement correla-
tion technique (DCT) and to those available in the literature point out that, the proposed form of the Jk-
integral possesses the required domain independence and leads to numerical results of high accuracy.
Further results are presented to illustrate the influences of the geometric and material constants on
the thermal fracture parameters.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) belong to a certain class
of composite materials that possess smooth spatial variations in
the volume fractions of the constituents. These variations lead to
a nonhomogeneous structure and require that the physical proper-
ties be represented by continuous functions for analytical and
computational purposes. FGMs have been utilized in a number of
technological applications such as thermal barrier coatings (Kawa-
saki and Watanabe, 2002), solid oxide fuel cells (Liu et al., 2004),
high performance cutting tools (Nomura et al., 1999), and biomed-
ical materials (Watari et al., 2004). Depending on the characteris-
tics of the processing technique employed, a functionally graded
material could be orthotropic in addition to being nonhomogene-
ous. Functionally graded materials processed by plasma spray
forming for instance have a lamellar microstructure and contain
weak cleavage planes parallel to the boundaries (Sampath et al.,
1995). The electron beam physical vapor deposition technique on
the other hand leads to a columnar microstructure in the processed
FGM with weak cleavage planes perpendicular to the bounding
ll rights reserved.

: +90 312 2102536.
surfaces (Kaysser and Ilschner, 1995). The graded materials pro-
cessed by such methods are generally referred to as orthotropic
FGMs. The distinctive feature of these materials from the mechan-
ics viewpoint is that, their thermomechanical properties are both
orthotropic and dependent upon the spatial coordinates (Ozturk
and Erdogan, 1997; Kim and Paulino, 2004; Dag, 2006; Kim and
Kc, 2008).

Various methodologies are proposed in the literature to exam-
ine the behavior of cracks located in orthotropic FGMs. One of
the effective ways of conducting fracture analysis of orthotropic
FGMs is to use Jk-integral in conjunction with the finite element
method. In its generalized form, Jk-integral is defined as a vector
at the tip of a crack (Eischen, 1987a). The Jk-integral vector has
two components J1 and J2, the former being equivalent to the J-
integral of Rice (1968). Knowles and Sternberg (1972), Budiansky
and Rice (1973) and Hellen and Blackburn (1975) laid out the the-
oretical framework of the Jk-integral within the context of mechan-
ically-loaded homogeneous isotropic materials. Considering
thermally-loaded homogeneous isotropic solids, Chen and Chen
(1981) developed the formulation of the Jk-integral, and Chen
and Ting (1985) introduced a Jk-integral based finite element anal-
ysis technique. Eischen (1987a) detailed an improved method for
the evaluation of the second component J2 of the Jk-integral, which
is applicable for homogeneous isotropic materials subjected to
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Fig. 1. An embedded crack in an orthotropic functionally graded medium.
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mechanical loads. For mechanically-loaded homogeneous aniso-
tropic bodies, computational implementation of the Jk-integral is
demonstrated by Chu and Hong (1990) using the finite element
method and by Sollero and Aliabadi (1993) and Pan and Amadei
(1996) using the boundary element method. There are a number
of studies that deal with the use of the Jk-integral in mixed-mode
fracture analysis of functionally graded materials. Eischen
(1987b) and Kim and Paulino (2002) put forward finite element
procedures employing Jk-integral for fracture analysis of graded
isotropic materials subjected to mechanical loads. Work on the for-
mulation and finite element implementation of the Jk-integral for
thermal fracture analysis of isotropic FGMs is conducted by Dag
(2007) and Dag and Yildirim (2009). Kim and Paulino (2003) pre-
sented a Jk-integral approach to compute the crack tip parameters
for mechanically-loaded orthotropic FGMs.

The review of the technical literature, as given in the foregoing
paragraph, reveals that there are no previous studies on the formu-
lation and implementation of the Jk-integral for mixed-mode frac-
ture analysis of orthotropic FGMs subjected to thermal stresses. In
fact, the only computational studies on thermal fracture of ortho-
tropic FGMs are those by Dag (2006), Dag et al. (2007) and Kim
and Kc (2008), which respectively present methods based on J-
integral, enriched finite elements, and interaction integral. The
goals of the present study on the other hand are to develop the for-
mulation of the Jk-integral for orthotropic FGMs subjected to ther-
mal stresses, and to lay out a computational procedure for the
implementation to evaluate the mixed-mode fracture parameters.

In the formulation of the Jk-integral, we consider an embedded
crack lying in an orthotropic functionally graded medium that is
under the effect of mixed-mode thermal loading. By using the con-
stitutive relations of plane orthotropic thermoelasticity, the gener-
alized definition of the Jk-integral at the tip of the embedded crack
is converted to a domain independent form that comprises line and
area integrals. A finite elements based numerical procedure is then
introduced so as to evaluate the components J1 and J2 of the Jk-inte-
gral, the modes I and II stress intensity factors (SIFs) KI and KII, and
the T-stress. Developed methodology is integrated into the general
purpose finite element analysis software ANSYS (1997).

Application of the proposed procedure is demonstrated by con-
sidering two different fracture mechanics problems, the first being
the problem of an embedded crack in an orthotropic FGM layer
subjected to steady-state thermal stresses, and the second the
problem of periodic cracks under the effect of transient thermal
loading. The developed method is validated by comparing the re-
sults generated by means of the Jk- integral to those computed
by the displacement correlation technique (DCT) in the case of
the embedded crack problem, and to those given by Dag et al.
(2007) in the case of the periodic cracking problem. The compari-
sons indicate that, the derived Jk-integral form is domain indepen-
dent, and that the Jk-integral based finite element procedure yields
numerical results of high accuracy. The results presented for the
embedded crack problem also illustrate the effects of geometric
and material constants upon the modes I and II stress intensity fac-
tors, the energy release rate, and the T-stress.
2. Jk-integral for thermally-loaded orthotropic functionally
graded materials

We consider an embedded crack in an orthotropic functionally
graded medium that is assumed to be subjected to thermal stresses
in the development of the Jk-integral. The problem geometry is de-
picted in Fig. 1. x1 and x2 axes, which are the principal axes of
orthotropy, constitute a local coordinate system whose origin O
is located at the crack tip. The linear elastic medium is in a state
of either plane stress or plane strain. In the case of plane stress,
the relations between the total strains eij and the stresses rij can
be expressed in the following form:
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2e12

264
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For plane strain, the constitutive relations are given by
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In Eqs. (1) and (2), Ei, mij, G12, and ai respectively stand for the elastic
modulus, the Poisson’s ratio, the shear modulus, and the coefficient
of thermal expansion. DT is temperature difference; and equals to
T � T0, T being the temperature of the point under consideration
and T0 the reference temperature. The properties of orthotropic
materials are related as

m12
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m13
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: ð3Þ

Referring to Fig. 1, the generalized definition of the Jk-integral at
the crack tip O can be written in the following way (Eischen,
1987a):

Jk ¼ lim
Ce!0

Z
Ce

ðWnk � rijnjui;kÞds
� �

; ði; j; k ¼ 1;2Þ; ð4Þ

where Ce is an open curve whose end points are on the lower and
upper crack surfaces, s is the arc-length, nj is the unit normal vector,
W is the mechanical strain energy density function, ui represents
the displacement vector, and a comma stands for partial differenti-
ation, i.e. (�),k � @(�)/@xk. Note that the first component of the Jk-inte-
gral, i.e. J1, is equivalent to the energy release rate. The mechanical
strain energy density function W is expressed as

W ¼
1
2 rijem

ij ; ði; j ¼ 1;2Þ for plane stress;
1
2 rijem

ij þ 1
2 r33em

33; ði; j ¼ 1;2Þ for plane strain:

(
ð5Þ

The mechanical strains in Eq. (5) are

em
11 ¼ e11 � a1DT; em

12 ¼ e12; em
21 ¼ e21;

em
22 ¼ e22 � a2DT; em

33 ¼ �a3DT: ð6Þ

The em
33 expression given above is valid only for the case of plane

strain since the total strain e33 is zero for plane strain and in general
nonzero for plane stress. However, em

33 is not required in the compu-
tation of W for the case of plane stress as can be seen from Eq. (5).
This is due to the fact that r33 is zero for plane stress. The explicit
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expressions of W in terms of the material parameters, the total
strains, and the temperature difference can be derived by using
Eqs. (1), (2), (5) and (6). These expressions are available in the arti-
cle by Dag (2006).

The Jk-integral defined by Eq. (4) is to be calculated over a van-
ishingly small open curve Ce. However, this definition is not suit-
able to be implemented by means of finite elements. It is
necessary to develop another form of Jk-integral that is defined
and evaluated over finite domains. This is accomplished by making
use of a formulation procedure, which is previously detailed by
Dag (2007) for thermally-loaded isotropic functionally graded
materials. The details of this procedure will not be reproduced here
for brevity. By following this method, the separate components J1

and J2 of the Jk-integral are recast into the following domain inde-
pendent forms:

J1 ¼
Z Z

A
ðrijui;1 �Wd1jÞq;j dA�

Z Z
A
ðW ;1ÞexplqdA; ði; j ¼ 1;2Þ;

ð7Þ
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Z Z
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Z Z
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ðW ;2ÞexplqdA

�
Z
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ðWþ �W�Þqds; ði; j ¼ 1;2Þ: ð8Þ

In the above representations, there are area integrals and a line
integral, which are defined over A and Cc, respectively. A is an arbi-
trary area around the crack tip and Cc is a straight line correspond-
ing to the portion of the crack lying in A. Both A and Cc are depicted
in Fig. 2. In the present study, for simplicity, we make use of a cir-
cular area A of radius R as shown in this figure. The straight line Cc

on the other hand is the line extending from point B to point O.
Since, the Jk-integral is domain independent, the components J1

and J2 are independent of the radius R of the area A.
In Eqs. (7) and (8), d1j and d2j are Kronecker delta functions, W+

and W� are the mechanical strain energy density functions defined
over the upper and lower crack surfaces, respectively, and (W,1)expl

and (W,2)expl are the explicit derivatives of the mechanical strain
energy density function. q is a function of x1 and x2, and represents
a right circular cone of height unity. The base circle of the cone is
centered at the origin O, and has a radius of R. The explicit deriva-
tives of the mechanical strain energy density function depend on
the partial derivatives of W with respect to the material parame-
ters and the temperature difference, as well as the partial deriva-
tives of the material parameters and the temperature difference
with respect to the spatial coordinates. The expressions of (W,1)expl

for plane stress and strain are given in the paper by Dag (2006). For
each case, (W,2)expl can be easily derived by replacing x1 by x2 in the
corresponding (W,1)expl expression.
A

−
+cΓ

crack tip 

crack R

x2

x1

B O

Fig. 2. Integration domains A and Cc.
The area integrals in J1 and J2 can be evaluated numerically in a
straightforward manner by utilizing Gauss quadrature techniques.
However, the line integral in J2 requires special treatment due to
the square-root singular behavior of the mechanical strain energy
density difference (W+ �W�) near the crack tip. Eischen (1987a)
suggested that the integration interval of the line integral be
divided into two parts, the first remote from the crack tip and
the second close to the crack tip. The integral with the interval
close to the crack tip can then be evaluated in closed form using
the asymptotic approximation to the mechanical strain energy
density difference. This approach is adopted in various studies
and shown to lead to numerical results of high accuracy (Kim
and Paulino, 2003; Dag and Yildirim, 2009). Following Eischen’s
method, J2 is written as

J2 ¼
Z Z

A
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In this equation, R is the length of the integration path Cc, d is the
length of the interval over which (W+ �W�) is approximated by
its asymptotic representation, x is the variable of the line integral,
b is a constant that depends on the material parameters evaluated
at the crack tip, and Ts is the T-stress, i.e. the constant term in the
asymptotic expansion of the stress component r11. The asymptotic
form can accurately approximate (W+ �W�) only if d is sufficiently
small compared to the crack length. A schematic of the integration
path of the line integral is shown in Fig. 3.

3. Evaluation of the thermal fracture parameters

If for a mixed-mode crack problem, temperature, displacement,
stress, and strain fields are known, J1 can be numerically evaluated
by using Eq. (7). The expression of J2, as given by Eq. (9) however,
contains KII and Ts, which are unknowns. In order to circumvent
this difficulty, we first define a new quantity bJ2 in the form:

bJ2 ¼
Z Z

A
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Z Z
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ðW ;2ÞexplqdA

�
Z R�d

0
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In the finite element implementation, for a given crack problem firstbJ2 is computed for two different values of d. If we denote these two
different values of d and the corresponding values of bJ2 respectively
by d1, d2 and bJ1

2;
bJ2

2; we get

bJ1
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Fig. 3. Schematic of the integration path of the line integral.
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Then, J2 and S are obtained by solving the linear system given by Eq.
(11).

In order to compute the modes I and II stress intensity factors
and the T-stress, we need the relations among these parameters,
and the components of the Jk-integral. When one of the principal
axes of orthotropy is parallel and the other is perpendicular to
the crack plane as shown in Fig. 1, the relations between the SIFs
and the components of the Jk-integral are as follows (Kim and
Paulino, 2003):

J1 ¼ B1K2
I þ B2K2

II; J2 ¼ B3K IK II; ð13Þ

where B1, B2, and B3 are constants that depend on the material
parameters evaluated at the crack tip. Eliminating KII from the
equations given above, we obtain KI as,

K I ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2B1
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B2
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J2

J1

� �2
s( )vuut : ð14Þ

Once KI is calculated through Eq. (14), KII can be found by using the
J2 expression given in Eq. (13). The T-stress can then be computed
via Eq. (12). The correct value of KI among the four possible values
given by Eq. (14) is determined by adopting the decoupling tech-
nique outlined by Sollero and Aliabadi (1993). This decoupling tech-
nique is based on the use of the relative normal and tangential
displacements of two nodes located close to the crack tip.

4. Finite element implementation

The developed Jk-integral based technique is implemented by
means of the finite element method. The procedure described in
Section 3 is integrated into the general purpose finite element
analysis software ANSYS (1997). The first step in thermal fracture
analysis of orthotropic FGMs is the computation of the tempera-
ture field. For the graded orthotropic medium depicted in Fig. 1,
the two-dimensional transient temperature distribution can be
found by solving the heat equation which is in the form:

@

@x1
k1ðx1; x2Þ

@T
@x1

� �
þ @

@x2
k2ðx1; x2Þ

@T
@x2

� �
¼ qCh

@T
@t
: ð15Þ

In Eq. (15), T is the temperature, k1, k2 are the principal thermal con-
ductivities in x1 and x2 directions, respectively, q is the density, Ch is
the specific heat, and t is the time. For a given crack configuration,
this equation is solved by using ANSYS and the resulting tempera-
ture field is provided as an input to the mechanical analysis. The
displacements, strains, and stresses computed through the mechan-
ical analysis are used in the evaluation of the thermal fracture
parameters. In both thermal and mechanical analyses, identical fi-
nite element meshes are utilized. The finite element meshes used
comprise 6-noded triangular elements. A 6-noded triangle is
formed by merging the three nodes of an 8-noded quadrilateral ele-
ment at a single point (Dag and Yildirim, 2009). The area and line
integrals given in Eqs. (7) and (10) are computed by making use
of the isoparametric finite element concept and standard Gauss
quadrature techniques.

In the technical literature, two basic approaches are utilized to
compute the material properties of FGMs. In the first approach, the
physical properties are represented by certain continuous func-
tions of spatial coordinates. In the second approach, micromechan-
ics models are used to estimate the material parameters. Among
the commonly used micromechanics models for FGMs, we can
mention the standard micromechanics approaches such as the
self-consistent method (Hill, 1965), and the Mori–Tanaka method
(Mori and Tanaka, 1973); and the higher-order micromechanical
theories, which explicitly couple the microstructural and the
macrostructural effects (Aboudi et al., 1999). The aim in the pres-
ent study is to develop a finite element method, which – given
the material property variations – can be used to predict thermal
fracture parameters for orthotropic FGMs. The method is devel-
oped in a way that, it yields the accurate crack tip parameters
regardless of the particular types of material property variation
profiles. The employment of micromechanics models to estimate
these material property variation profiles is not within the scope
of our study. As described in the next section, we used power func-
tions to represent the spatial variations of the material properties
of orthotropic FGMs. The use of power functions for modeling of
the material property variation profiles of FGMs is a widely ac-
cepted and used approach in the technical literature (Li, 2008;
Woo et al., 2006; Shen, 2002; Lee and Erdogan, 1998).

There are two different ways of taking into account the
smooth spatial variations of the material properties of FGMs in
a finite element model. The elements used in these two different
methods are named as graded and homogeneous finite elements.
During the formation of the element stiffness matrix of a graded
finite element, the material parameters are computed at each
Gauss point (Dag, 2006). For a homogeneous finite element how-
ever, the material parameters are uniform and computed at the
centroid (Dag and Ilhan, 2008). Both approaches lead to numeri-
cal results of high accuracy provided that the finite element mesh
possesses adequate refinement in the crack tip region. In the cur-
rent study, we employ homogeneous finite elements to model the
smooth spatial variations of the thermomechanical properties of
orthotropic FGMs.

As indicated by Eq. (11), the d values used to determine bJ1
2 andbJ2

2 are denoted by d1 and d2. It is required that d1 and d2 be suffi-
ciently small, since they are the lengths of the regions in which
Wþ �W�� �

is approximated by its asymptotic representation.
Our numerical studies showed that the developed computational
procedure yields accurate results when d1 and d2 are set such that,
d1 = 2(10)�5a and d2 = 6(10)�5a, where a is the half crack length.
5. Numerical results

In this section, we consider two different crack problems in or-
der to illustrate the application of the developed Jk-integral based
method. The first problem we examine is that of an embedded
crack located in an orthotropic FGM layer subjected to steady-state
thermal stresses. In the second case, we deal with a periodic crack-
ing problem for which mixed-mode transient fracture parameters
were previously evaluated by Dag et al. (2007) through the use
of enriched finite elements.

The geometry of the first problem is shown in Fig. 4. X1 and X2 in
the figure are the principal and at the same time the global coordi-
nates. The orthotropic FGM layer has a thickness of h and contains
an embedded crack of length 2a located at X2 = h1. The layer is as-
sumed to be 100% metal at X2 = 0 and 100% ceramic at X2 = h. The
metal and ceramic components of the FGM layer are nickel (Ni)
and alumina (Al2O3), respectively. The layer is orthotropic and
there are smooth spatial variations in all of the thermomechanical
properties in the thickness direction. Hence, all thermomechanical
properties are functions of the X2-coordinate.

The elastic medium is assumed to be initially at a reference tem-
perature of T0 for which the stresses are zero. The temperature of the
bounding plane at y = h is then increased to 2T0 and that of the
boundary at y = 0 is kept at T0. The crack surfaces and all other
bounding planes are taken as insulated. It is further assumed that
steady-state temperature field is established within the layer.
Under these conditions, the heat flow is two-dimensional and the
temperature field can be computed by taking the right hand side of
Eq. (15) as zero. The continuous variations in the thermomechanical
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Fig. 4. An embedded crack in an orthotropic FGM layer.
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properties of the layer are represented by power functions; and each
of the material properties required in the steady-state analysis is
expressed in the following form:

AðX2Þ ¼ Am þ ðAc � AmÞ X2

h

� �p

; ð16Þ

where A stands for any of the material parameters, and the super-
scripts m and c refer to the properties of the 100% metal (Ni) and
100% ceramic (Al2O3) planes, respectively. The variation given
above is used for the material parameters E1, E2, m12, m13, m31, m32,
G12, a1, a2, a3, k1, and k2. The corresponding exponents for these
properties are respectively denoted by c1, c2, b12, b13, b31, b32, c12,
d1, d2, d3, x1, and x2.

Alumina–nickel is a commonly used combination in the
processing of ceramic–metal functionally graded materials
(Bhattacharyya et al., 2008; Kruft et al., 2008). An alumina–nickel
FGM coating can be processed by employing the plasma spray
forming technique, and depositing alumina and nickel over a
metallic substrate (Kesler et al., 1998). The deposited coating
would be 100% alumina at the free surface and 100% nickel at
the interface. Due to the use of plasma spray forming, such a
coating is expected to be both orthotropic and nonhomogeneous.
Experimental data on the orthotropic elastic and conductive
properties of plasma-sprayed orthotropic alumina is available in
the articles by Parthasarathi et al. (1995), and Sevostianov and
Kachanov (2001); and we used this data for the elastic and
conductive properties of the 100% alumina surface. However, no
published data is available in the literature on the orthotropic
thermal expansion coefficients of plasma-sprayed alumina. The
nominal value for the thermal expansion coefficient of alumina
is given as a = 7.5(10)�6 (�C)�1 by Callister (2000). This value is
used as the thickness-direction thermal expansion coefficient of
the 100% alumina surface. For the other two principal directions,
larger values are used in order to be able to assess the influence
of orthotropy on the fracture mechanics parameters. The density
and specific heat of alumina are also taken from the reference,
Callister (2000). The thermoelastic properties of the 100% alumina
surface are then given as
Ec
1¼90:43GPa; Ec

2¼116:36GPa; Gc
12¼38:21GPa; ð17Þ

mc
12¼0:22; mc

13¼0:14; mc
31¼0:14; mc

32¼0:21; ð18Þ
ac

1¼8ð10Þ�6 ð�CÞ�1
; ac

2¼7:5ð10Þ�6 ð�CÞ�1
; ac

3¼9ð10Þ�6 ð�CÞ�1
;

ð19Þ
kc

1¼21:25W=ðm KÞ; kc
2¼29:82 W=ðm KÞ; ð20Þ

qc¼3980kg=m3; Cc
h¼775J=ð kgKÞ: ð21Þ

The data used for the property values of the 100% nickel surface is
from Callister (2000) and provided below

Em
1 ¼Em

2 ¼Em¼204GPa; mm
12¼mm

13¼mm
31¼mm

32¼mm¼0:31; ð22Þ
Gm

12¼Em=ð2ð1þmmÞÞ¼77:9GPa; am
1 ¼am

2 ¼am
3 ¼13:3ð10Þ�6 ð�CÞ�1

;

ð23Þ
km

1 ¼km
2 ¼70W=ðm KÞ; ð24Þ

qm¼8890kg=m3; Cm
h ¼456 J=ð kg KÞ: ð25Þ

Eqs. (16)–(25) are approximate since the metallic microstructure in
the FGM layer could also be orthotropic. Although, the density and
specific heat values given by Eqs. (21) and (25) are not required in
the solution of the steady-state problem described above, they are
needed in the transient thermal fracture analysis elucidated at the
end of this section. Note also that there are limitations on the Pois-
son’s ratios of orthotropic materials as indicated by Agarwal and
Broutman (1990); and these limitations are satisfied at every point
of the orthotropic functionally graded layer.

The loading and the geometry are both symmetric about X2-axis
for the problem shown in Fig. 4. The vertical displacement and the
temperature are even functions of X1 while the horizontal displace-
ment is an odd function of the same coordinate. It suffices to
construct a finite element model of one-half of the medium. Hence,
the finite element model is developed for the domain X1 P 0 and
the fracture parameters are computed at the crack tip X1 = a. The
parameters at the tip X1 = �a can be obtained by considering the
equalities

J1ðaÞ ¼ J1ð�aÞ; J2ðaÞ ¼ �J2ð�aÞ; ð26Þ
K IðaÞ ¼ K Ið�aÞ; K IIðaÞ ¼ �K IIð�aÞ; TsðaÞ ¼ Tsð�aÞ: ð27Þ



Fig. 5. (a) Deformed shape of the finite element mesh generated by considering the
case of plane strain; (b) close-up view of the circular domains around the crack tip.
a/W = 0.1, h/W = 0.4, h1/W = 0.25, c1 = c2 = c12 = 2, b12 = b13 = b31 = b32 = 1.5,
d1 = d2 = d3 = 3, x1 = x2 = 4.
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A circular domain of radius R is used to conduct fracture analysis at
the tip X1 = a. The domain geometry is also depicted in Fig. 4. The
finite element meshes used in the solutions of the thermal and
mechanical problems are identical and comprise 6-noded triangular
elements.

In order to validate the developed Jk-integral based method,
some comparisons of the numerical results obtained by Jk-integral
are made to those computed by using another computational
method, namely the displacement correlation technique. The nor-
malized modes I and II stress intensity factors evaluated at the
crack tip X1 = a by these two different methods are provided in
Table 1. The normalized SIFs are defined as

KIn ¼
K I

r0
ffiffiffiffiffiffi
pa
p ; K IIn ¼

K II

r0
ffiffiffiffiffiffi
pa
p ; r0 ¼ ac

1Ec
1T0: ð28Þ

The details of the displacement correlation technique for mixed-
mode fracture analysis of orthotropic FGMs are provided by Dag
and Ilhan (2008) and not given here for brevity. The stress intensity
factors shown in the table are generated by considering both plane
stress and strain and by taking d2 as 1/3 and 3. d2 is the exponent of
the power function representing the variation of the thermal expan-
sion coefficient a2. Four different values of the normalized radius
R/a are used to compute the SIFs by the Jk-integral method. The de-
formed shape of the finite element mesh used in the analyses car-
ried out for the case of plane strain and d2 = 3 is given in Fig. 5.
This mesh contains a total of 93952 triangular elements and
189,223 nodes. From Table 1, it can be seen that the results calcu-
lated for the four different values of R/a are in excellent agreement.
This demonstrates the domain independence of the developed form
of the Jk-integral. The results generated by the Jk-integral also agree
quite well with those evaluated by using DCT, which is indicative of
the high levels of accuracy achieved by both methods.

Figs. 6–8 show the variations of the steady-state normalized
fracture parameters calculated at the crack tip X1 = a, with respect
to x2 and h1/W. x2 is the exponent of the power function repre-
senting the variation of the thermal conductivity k2. The SIFs given
in Fig. 6 are normalized as shown by Eq. (28), while the energy re-
lease rate and the T-stress given respectively in Figs. 7 and 8 are
normalized as

J1n ¼
J1

r2
0
pa

E c
1

1� mc
12

� �2
	 
 ; Tsn ¼

Ts

r0
; ð29Þ

where r0 follows from Eq. (28). The results are generated by consid-
ering the state of plane strain and taking R/a as 0.1. Double scales
are utilized in the figures in order to more clearly present the influ-
ence of x2 on the crack tip parameters. x2 is varied between 0 and
1, and 1/x2 is varied between 1 and 0 so as to cover the whole range
0 6x2 <1 in a compact manner. The smallest value of h1/W is ta-
ken as 0.2 since it is found that the surfaces of the crack come into
contact and crack closure occurs for smaller values of h1/W.
Table 1
Comparisons of the stress intensity factors obtained by Jk-integral to those calculated
d1 = d3 = 3, x1 = x2 = 4.

Jk-integral

R/a = 0.1

Plane stress d2 = 1/3 KIn 0.0176
KIIn 0.1197

d2 = 3 KIn 0.0207
KIIn 0.1271

Plane strain d2 = 1/3 KIn 0.0259
KIIn 0.1586

d2 = 3 KIn 0.0294
KIIn 0.1663
Fig. 6 depicts the plots of the normalized modes I and II stress
intensity factors, KIn and KIIn, as functions of x2 and h1/W. Among
the four considered values of h1/W, 0.2 leads to the smallest K0Ins.
The KIn values evaluated for h1/W = 0.3 are slightly larger than
those computed for h1/W = 0.35 when 1/x2 is close to zero. Other
than this exception, KIn is seen to increase as h1/W is increased
from 0.2 to 0.35 while x2 is kept constant. KIIn on the other hand,
decreases as h1/W increases from 0.2 to 0.35. In general, mode II
SIFs are larger than the mode I SIFs implying the dominance of
shear-mode deformation near the crack tips. Fig. 7 shows the ef-
fects of x2 and h1/W on the normalized J1-integral J1n, which is
equal to the normalized energy release rate. As h1/W increases
from 0.2 to 0.35, the normalized energy release rate decreases. It
is also seen that J1n is an increasing function of the exponent x2.
The results illustrating the effects of x2 and h1/W on the
by DCT. a/W = 0.1, h/W = 0.4, h1/W = 0.25, c1 = c2 = c12 = 2, b12 = b13 = b31 = b32 = 1.5,

DCT

R/a = 0.2 R/a = 0.3 R/a = 0.4

0.0176 0.0176 0.0176 0.0177
0.1197 0.1197 0.1197 0.1190
0.0207 0.0207 0.0207 0.0209
0.1271 0.1271 0.1271 0.1263

0.026 0.026 0.0261 0.0259
0.1587 0.1588 0.1589 0.1579
0.0295 0.0295 0.0296 0.0294
0.1664 0.1665 0.1666 0.1656



Col 21 vs Col 1 
Col 21 vs Col 6 

Col 21 vs Col 11 
Col 21 vs Col 16 

Col 21 vs Col 1 
Col 21 vs Col 6 

Col 21 vs Col 11 
Col 21 vs Col 16 

ω2

0.0 0.2 0.4 0.6 0.8 1.0

K
In

0.00

0.02

0.04

0.06

1 / ω2

0.1 8.0 6.0 4.0 2.0 0.0
0.00

0.02

0.04

0.06

h1 / W = 0.2
h1 / W = 0.25

h1 / W = 0.3

h1 / W = 0.35

ω2

0.0 0.2 0.4 0.6 0.8 1.0

K
II

n

0.04

0.08

0.12

0.16

0.20

0.24

1 / ω2

0.1 8.0 6.0 4.0 2.0 0.0
0.04

0.08

0.12

0.16

0.20

0.24

h1 / W = 0.2 h1 / W = 0.25

h1 / W = 0.3

h1 / W = 0.35

a 

b 

Fig. 6. Normalized mixed-mode stress intensity factors versus x2 and h1/W: (a)
mode I SIFs; (b) mode II SIFs. a/W = 0.1, h/W = 0.4, c1 = c2 = c12 = 2,
b12 = b13 = b31 = b32 = 1.5, d1 = d2 = d3 = 3, x1 = 4.

ω2

0.0 0.2 0.4 0.6 0.8 1.0

J 1n

0

5

10

15

20

25

1 / ω2

0.00.26.0 4.00.1 8.0
0

5

10

15

20

25

h1 / W = 0.2
h1 / W = 0.25

h1 / W = 0.3

h1 / W = 0.35

310−× 310−×

Fig. 7. Normalized energy release rate versus x2 and h1/W. a/W = 0.1, h/W = 0.4,
c1 = c2 = c12 = 2, b12 = b13 = b31 = b32 = 1.5, d1 = d2 = d3 = 3, x1 = 4.

Col 21 vs Col 3 
Col 21 vs Col 8 

Col 21 vs Col 13 
Col 21 vs Col 18 

Col 21 vs Col 3 
Col 21 vs Col 8 

Col 21 vs Col 13 
Col 21 vs Col 18 

ω2

0.0 0.2 0.4 0.6 0.8 1.0

T
sn

-0.4

-0.2

0.0

0.2

1 / ω2

0.1 8.0 6.0 4.0 2.0 0.0
-0.4

-0.2

0.0

0.2

h1 / W = 0.3

h1 / W = 0.25 h1 / W = 0.2

h1 / W = 0.35

Fig. 8. Normalized T-stress versus x2 and h1/W. a/W = 0.1, h/W = 0.4,
c1 = c2 = c12 = 2, b12 = b13 = b31 = b32 = 1.5, d1 = d2 = d3 = 3, x1 = 4.

W 

a

a-a

X2

X1

h1
W 

a

Orthotropic FGM E1

E2

T = 2T0

T = T0

100% Al2O3

100% Ni

Reference Temperature = T0

h
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normalized T-stress Tsn are provided in Fig. 8. The T-stress can be
tensile or compressive depending on the values of x2 and h1/W.
Ts is found to be tensile for h1/W = 0.35 and compressive for h1/
W = 0.2, 0.25 and 0.3. Furthermore, the Tsn curve goes through a
maximum when h1/W = 0.2 or 0.25 and a minimum when h1/
W = 0.35.

The second problem we consider to validate the Jk-integral
based method is the problem of periodic cracking in an orthotropic
FGM layer that is subjected to transient thermal stresses. Mixed-
mode stress intensity factors for this case were originally provided
in the article by Dag et al. (2007). These results were computed by
utilizing enriched finite elements at the crack tip. The geometry of
the problem is depicted in Fig. 9. An infinitely long FGM layer of
thickness h possesses periodic cracks of length 2a and spacing W;
and is assumed to be in a deformation state of plane strain. The
layer is initially stress-free at a reference temperature of T0. The
temperature of the boundary at X2 = h � h1 is then increased to
2T0 and that of the boundary at X2 = �h1 is kept at T0. The surfaces
of all cracks are insulated. The transient temperature field under
these boundary conditions is determined by solving Eq. (15).

All thermomechanical properties of the layer are continuously
variable in X2-direction. The bounding planes at X2 = h � h1 and
X2 = �h1 are assumed to be 100% alumina and 100% nickel, respec-
tively. The variations in the material parameters are represented
by power functions. Each of the material properties has the follow-
ing functional form (Dag et al., 2007):

BðX2Þ ¼ Bc þ ðBm � BcÞ h� h1 � X2

h

� �q

; ð30Þ

where B symbolizes any of the material properties. The superscript
c refers to the 100% ceramic (alumina) plane at X2 = h � h1 whereas
m refers to the 100% metal (nickel) plane at X2 = �h1. The properties
of the 100% ceramic and 100% metal planes are given by Eqs. (17)–
(25). In the analysis presented by Dag et al. (2007), the variation gi-
ven by the above equation is applied to the material parameters E1,
E2, m21, m23, m31, m32, G12, a1, a2, a3, k1, k2, q, and Ch; and the expo-
nents corresponding to these parameters are respectively denoted
by c1, c2, b21, b23, b31, b32, c12, d1, d2, d3, x1, x2, k, and v. The finite



Table 2
Comparisons of the transient stress intensity factors computed by Jk-integral to those
given by Dag et al. (2007). a/W = 0.3, h/W = 0.6, h1/W = 0.5, c1 = c2 = c12 = 2,
b21 = b23 = b31 = b32 = 1.5, d1 = d2 = d3 = 2, x1 = x2 = 2, k = v = 1.5.

s Jk-integral Dag et al. (2007)

KIn KIIn KIn KIIn

0.01 0.0524 0.0757 0.0526 0.0761
0.015 0.0619 0.0978 0.0625 0.0987
0.02 0.0689 0.1105 0.0694 0.1114
0.03 0.0771 0.1221 0.0778 0.1225
0.04 0.0813 0.1248 0.0820 0.1257
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element solution of the periodic cracking problem requires that, fi-
nite element model of a unit cell be generated by imposing appro-
priate boundary and periodicity conditions. Extensive details on
finite element modeling of periodic cracks are available in the paper
by Dag et al. (2007).

The comparisons of the transient normalized modes I and II
stress intensity factors computed by means of Jk-integral to those
given by Dag et al. (2007) are provided in Table 2. R/a value is fixed
as 0.05 in the Jk-integral computations. Since h1/W is set as 0.5, the
crack tip is in the proximity of the upper boundary X2 = h � h1. For
this reason, it was possible to use only a relatively small value for
R/a. In Table 2, s stands for normalized time and defined as

s ¼ kc
1

qcCc
hh2 t: ð31Þ

The definitions of the normalized mixed-mode SIFs, KIn and KIIn, are
same as those shown by Eq. (28).

Examining the results given in the table, it can be seen that the
normalized modes I and II stress intensity factors generated by the
Jk-integral based method are in very good agreement with those gi-
ven by Dag et al. (2007). Therefore, considering the validation stud-
ies described in this section, we conclude that the developed form
of the Jk-integral is domain independent; and that the proposed
computational technique is a robust way of evaluating fracture
parameters for orthotropic FGMs that are subjected to steady-state
or transient thermal stresses.
6. Concluding remarks

In this article, a new computational method based on the
Jk-integral is introduced, which enables accurate evaluation of
fracture parameters for orthotropic FGMs subjected to thermal
stresses. A finite element procedure is put forward so as to com-
pute the modes I and II stress intensity factors, the energy release
rate, and the T-stress. The developed method is validated on two
different fracture mechanics problems: The problem of an embed-
ded crack in an orthotropic FGM layer under steady-state thermal
stresses; and that of periodic cracks subjected to transient thermal
loading. Comparisons provided by considering these two problems
do point out that, the proposed form of the Jk-integral possesses
the required domain independence and leads to numerical results
of high accuracy.

A numerical analysis is conducted by considering the embedded
crack problem in order to assess the effects of the relative crack
location h1/W and the exponent x2. It is shown that the relative
crack location strongly influences the outcome of the fracture anal-
ysis. Crack closure is found to occur for h1/W values less than 0.2;
hence in the computations minimum h1/W value is set as 0.2 to
avoid the contact of the crack surfaces. The numerical results pre-
sented also demonstrate the variations of the crack tip parameters
with respect to the exponent x2, which governs the gradation pro-
file of the thermal conductivity in the thickness direction. It is
shown that the normalized energy release rate is an increasing
function of x2. This exponent is also found to have a significant
influence on the T-stress.

The method presented in this article has certain advantages over
other computational techniques used in fracture analysis of FGMs,
which can be exploited to conduct a more effective analysis. For
example, in the displacement correlation technique (Dag and Ilhan,
2008) and the enriched finite element method (Dag et al., 2007),
special crack tip elements are needed to extract the mixed-mode
stress intensity factors; however, the proposed method does not
require the use of special crack tip elements for the evaluation of
the fracture parameters. One other computational technique devel-
oped previously for fracture analysis of orthotropic functionally
graded materials is based on the interaction integral (Kim and Kc,
2008). In the interaction integral approach, the J-integral is used in
conjunction with auxiliary fields, which have to be suitably defined
in order to evaluate the crack tip parameters. On the other hand, in
the formulation of the Jk-integral, auxiliary fields are not required
and the generalized definition can be directly reduced to a form
defined over finite domains. The interaction integral is expressed
in terms of solely area integrals (Kim and Kc, 2008) whereas the
domain independent form of the Jk-integral comprises both area
and line integrals. Nevertheless, the existence of the line integral
term in the Jk-integral expression is not deemed to be a particular
disadvantage, since this integral can be evaluated quite accurately
by utilizing the method described in Section 2.

In the finite element implementation of the Jk-integral method,
a high degree of mesh refinement is required especially in the
vicinity of the crack tip and in the domain over which Jk-integral
is defined. This results in the utilization of a large number of ele-
ments in the finite element model. However, all the elements used
in the discretization of the medium are regular finite elements. For
this reason, the construction of the finite element mesh becomes
relatively straightforward with a general purpose finite element
analysis software such as ANSYS.

The work reported in this article is original in the sense that it
illustrates how the Jk-integral can be formulated and implemented
using the finite element method to compute thermal fracture
parameters for orthotropic functionally graded materials. The Jk-
integral based procedure proposed allows direct calculation of
not only the mixed-mode stress intensity factors and the energy
release rate but also the T-stress. The inclusion of the T-stress in
computations aimed at determining crack kinking angles or crack
tip plastic zone sizes is known to enhance the accuracy of the gen-
erated results. The analysis capability developed in the present
study is seen to be particularly suited for quantifying the influ-
ences of material property variation profiles upon the fracture
parameters. This capability can also be incorporated into optimiza-
tion schemes in order to determine the composition profiles of
orthotropic functionally graded components that will minimize
the thermally induced crack driving forces.
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