• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Tıp Fakültesi
  • Temel Tıp Bilimleri Bölümü
  • Temel Tıp Bilimleri Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Tıp Fakültesi
  • Temel Tıp Bilimleri Bölümü
  • Temel Tıp Bilimleri Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Veri Madenciliği Sınıflama Yöntemlerinin Başarılarının Bağımlı Değişken Prevelansı Örneklem Büyüklüğü ve Bağımsız Değişkenler Arası Ilişki Yapısına Göre Karşılaştırılması

Thumbnail
View/Open
ff8b6338-f511-402b-89d0-899bd48479f8.pdf (7.673Mb)
Date
2014
Author
Özgür Dolgun, Muhsin
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Decision Trees, Bayesian Networks, and Support Vector Machines are the most commonly used statistical and data mining based methods of classification in the literature and practice. While using these methods, the impact of important factors on the model success, such as, the measuring level of the independent variables (i.e., continuous, discrete, etc.), the distribution of the independent variables (i.e., symmetric, skewed, etc.), the amount of correlation between independent variables (i.e., low, medium or strong relationship), and the sample size are often ignored. Therefore, in this study, the impact of different structures of dependent and independent variables on the model performances of Decision Trees, Bayesian Networks, Support Vector Machines methods are compared by a simulation study. A total of 243 different simulation scenarios were obtained by taking into account three levels for the degree of correlation between independent variables, three levels for the number of independent variables in a model, three levels for the sample size, three levels for the amount of the correlation between dependent and independent variables, and three levels for the prevalence of the dependent variable. Each scenario was repeated 1000 times, for each repetition mentioned classification methods are applied and they were compared by their model success criteria. At the end of the thesis, some general suggestions are given to the researchers on which classification method should be used or avoided under different structures of dependent and independent variables.
URI
http://hdl.handle.net/11655/1000
xmlui.mirage2.itemSummaryView.Collections
  • Temel Tıp Bilimleri Bölümü Tez Koleksiyonu [163]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV