• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Endüstri Mühendisliği Bölümü
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Endüstri Mühendisliği Bölümü
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Buıldıng Bayesıan Networks Based On Patıent Reported Outcome Questıonnaıres For Musculo-Skeletal Condıtıons

View/Open
Yücetürk, Hakan-yeni.pdf (1.829Mb)
Date
2020
Author
Yücetürk, Hakan
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Machine learning (ML) which is a branch of artificial intelligence (AI), has been an important approach used in the medical domain. ML approaches learn from historical data to evaluate and predict patient status. These approaches have been successful in medical domains, such as radiology and dermatology, where a large amount of data exists with clearly labelled patient outcomes. However, such clearly labelled outcome data do not exist in large amounts in most medical domains. Patient reported outcome measures (PROMS) are the primary way to assess patient outcomes in many medical areas. Filling in PROMs regularly and repetitively can be difficult due to time and cognitive-load requirements. Considering that some PROMs contain over 30 questions, collecting large amounts of patient outcome data can be difficult in these domains. This study proposes an approach for collecting patient outcome data with less time and cognitive-load requirements. In this context, an ML approach called Bayesian networks (BNs) is used to predict patient outcomes with missing PROM inputs, and to identify the most informative PROM questions for specific patients. Also, random questions were selected from the PROMs and these questions were used to determine the patient status. The obtained estimation results were compared with the estimation results obtained by using the most informative questions. The proposed approach has been applied to PROMS used in the musculo-skeletal domain. Results were evaluated by cross validation method. Crossvalidation results show that the proposed approach can accurately predict patient outcomes with fewer PROM questions.
URI
http://hdl.handle.net/11655/22677
xmlui.mirage2.itemSummaryView.Collections
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu [39]
xmlui.dri2xhtml.METS-1.0.item-citation
IEEE
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV