• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluatıng the Use of Neural Rankıng Methods in Search Engınes

View/Open
OmerSahin_Master_2022-01-17.pdf (3.369Mb)
Date
2022
Author
Şahin, Ömer
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
A search engine strikes a balance between effectiveness and efficiency to retrieve the best documents in a scalable way. Recent deep learning-based ranker methods prove effective and improve state of the art in relevancy metrics. However, unlike index-based retrieval methods, neural rankers like BERT do not scale to large datasets. In this thesis, we propose a query term weighting method that can be used with a standard inverted index without modifying it. Using a pairwise ranking loss, query term weights are learned using relevant and irrelevant document pairs for each query. The learned weights prove to be more effective than term recall values previously used for the task. We further show that these weights can be predicted with a BERT regression model and improve the performance of both a BM25 based index and an index already optimized with a term weighting function. In addition, we examine document term weighting methods in the literature that work by manipulating term frequencies or expanding documents for document retrieval tasks. Predicting weights with the help of contextual knowledge about document instead of term frequencies for documents terms significantly increase retrieval and ranking performance.
URI
http://hdl.handle.net/11655/26118
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [177]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV