Show simple item record

dc.contributor.advisorDinçer D'Alessandro, Hilal
dc.contributor.advisorKral, Andrej
dc.contributor.authorAdalılar, İrem
dc.date.accessioned2022-05-12T07:57:45Z
dc.date.issued2022
dc.date.submitted2022-04-27
dc.identifier.citation1. Michael S, Erik S, Udo S, Brian M, Stefan C, Zeberg H. Atlas of Anatomy, Latin Nomenclature, 2nd edition. Three Volume Set. Thieme Medical Publishers; 2016, 1–1959. 2. Johnson Chacko L, Wertjanz D, Sergi C, et al. Growth and cellular patterning during fetal human inner ear development studied by a correlative imaging approach. BMC Dev Biol. 2019;19(1):11. doi:10.1186/s12861-019-0191-y. 3. Franke-Trieger A, Jolly C, Darbinjan A, Zahnert T, Mürbe D. Insertion depth angles of cochlear implant arrays with varying length: a temporal bone study. Otol Neurotol. 2014;35(1):58-63. doi:10.1097/MAO.0000000000000211. 4. Pietsch M, Aguirre Dávila L, Erfurt P, Avci E, Lenarz T, Kral A. Spiral Form of the Human Cochlea Results from Spatial Constraints. Sci Rep. 2018;8(1):7020. 5. Alexiades G, Dhanasingh A, Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol. 2015;36(5):904-907. doi:10.1097/MAO.0000000000000620. 2015. 6. Erixon E, Högstorp H, Wadin K, Rask-Andersen H. Variational anatomy of the human cochlea: implications for cochlear implantation. Otol. Neurotol. 2009;30(1):14-22. doi:10.1097/MAO.0b013e31818a08e8. 7. Escudé B, James C, Deguine O, Cochard N, Eter E, Fraysse B. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurootol. 2006;11. doi:10.1159/000095611. 8. Litovsky R. Development of the auditory system. Handb Clin Neurol. 2015;129:55-72. doi:10.1016/B978-0-444-62630-1.00003-2. 9. Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A. Variations in microanatomy of the human cochlea. J Comp Neurol. 2014;522(14):3245-3261. doi:10.1002/cne.23594. 10. D’Arcy W, Thompson. On growth and form. Vol. 2. Cambridge: Cambridge university press; 1961. 11. Kuthubutheen J, Grewal A, Symons S, et al. The Effect of Cochlear Size on Cochlear Implantation Outcomes. Biomed Res Int. 2019;2019:5849871. doi:10.1155/2019/5849871. 12. Ekdale EG. Form and function of the mammalian inner ear. J Anat. 2016;228(2):324-337. doi:10.1111/joa.12308. 13. Landsberger DM, Svrakic M, Roland JT Jr, Svirsky M. The Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants. Ear Hear. 2015;36(5):e207-e213. doi:10.1097/AUD.0000000000000163. 14. Heutink F, de Rijk SR, Verbist BM, Huinck WJ, Mylanus EAM. Angular Electrode Insertion Depth and Speech Perception in Adults With a Cochlear Implant: A Systematic Review. Otol Neurotol. 2019;40(7):900-910. doi:10.1097/MAO.0000000000002298. 15. Manoussaki D, Dimitriadis EK, Chadwick RS. Cochlea’s graded curvature effect on low frequency waves. Phys Rev Lett. 2006;96(8):088701. doi:10.1103/PhysRevLett.96.088701. 16. Thong JF, Low D, Tham A, Liew C, Tan TY, Yuen HW. Cochlear duct length-one size fits all?. Am J Otolaryngol. 2017;38(2):218-221. doi:10.1016/j.amjoto.2017.01.015. 17. Mansur D. I, Haque MK, Sharma K, Mehta DK, Shakya R. Use of head circumference as a predictor of height of individual. Kathmandu Univ Med J. 2014;12(2), 89-92. 18. Hshieh TT, Fox ML, Kosar CM, et al. Head circumference as a useful surrogate for intracranial volume in older adults. Int Psychogeriatr. 2016;28(1):157-162. doi:10.1017/S104161021500037X. 19. Heutinck P, Knoops P, Florez NR, et al. Statistical shape modelling for the analysis of head shape variations. J Craniomaxillofac Surg. 2021;49(6):449-455. doi:10.1016/j.jcms.2021.02.020. 20. Weech AA. Signposts on the highway of growth. AMA Am J Dis Child. 1954;88(4):452-457. doi:10.1001/archpedi.1954.02050100454004. 21. Haworth S, Shapland CY, Hayward C, et al. Low-frequency variation in TP53 has large effects on head circumference and intracranial volume. Nat Commun. 2019;10(1):357. doi:10.1038/s41467-018-07863-x. 22. Rau A, Demerath T, Kremers N, Eckenweiler M, von der Warth R, Urbach H. Measuring the Head Circumference on MRI in Children: an Interrater Study. Clin Neuroradiol. 2021;31(4):1021-1027. doi:10.1007/s00062-021-01019-z. 23. Møller, Aage R. Hearing: anatomy, physiology, and disorders of the auditory system. Plural Publishing, Texas; 2012. 24. Frank EM, Baran AJ. The auditory system: Anatomy, physiology, and clinical correlates. Plural Publishing; 2018. 25. Hardy, M., The length of the organ of Corti in man. Am. J. Anat. 1938;62(1): 291-311. https://doi.org/10.1002/aja.1000620204. 26. Kawano A, Seldon HL, Clark GM. Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Ann Otol Rhinol Laryngol. 1996;105(9):701-709. doi:10.1177/000348949610500906. 27. Würfel W, Lanfermann H, Lenarz T, Majdani O. Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hear Res. 2014;316:65-72. doi:10.1016/j.heares.2014.07.013. 28. Ades HW, Axelsson A, Baird IL, v. Békésy G, Boord RL, Campbell CBG, et al. Anatomical features of the inner ear in submammalian vertebrates, Auditory System. Springer, Berlin, Heidelberg, 1974. p. 159-212. 29. Carpenter RHS. Mammalian vestibular physiology. Nature. 1980,284(5755):494-494. 30. Tascioglu AB. Brief review of vestibular system anatomy and its higher order projections. Neuroanatomy, 2005, 4.4: 24-27. 31. Leonetti JP, Smith PG, Linthicum FH. The petrous carotid artery: anatomic relationships in skull base surgery. Otolaryngol Head Neck Surg. 1990;102(1):3-12. doi:10.1177/019459989010200102. 32. Scarabino T, Salvolini U. Atlas of morphology anf functional anatomy of the brain. Springer, Verlag, Berlin, Heidelberg; 2006. 33. Harrison, Robert V. The biology of hearing and deafness. Charles C. Thomas Publisher; 1988. 34. Elverland HH. Ascending and intrinsic projections of the superior olivary complex in the cat. Exp Brain Res. 1978;32(1):117-134. doi:10.1007/BF00237396. 35. Brodal A. Neurological anatomy, Relation to Clinical Anatomy. Annals of Neurology. 1981;10(6). 36. Fay RR, Popper AN. The lateral line system New York, Springer; 2014. 37. Roberson GH. Diagnostic and Surgical Imaging Anatomy: Brain, Head & Neck, Spine. 2007. American Journal of Roentgenology. 2007 Jan;188(1). 38. Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol. 2004;91(3):1282-1296. doi:10.1152/jn.01125.2002. 39. Jutras B, Lagacé J, Koravand A. The development of auditory functions. Handb Clin Neurol. 2020;173:143-155. doi:10.1016/B978-0-444-64150-2.00014-9. 40. Moore JK, Linthicum FH Jr. The human auditory system: a timeline of development. Int J Audiol. 2007;46(9):460-478. doi:10.1080/14992020701383019. 41. Northern J, Downs M. What is hearing loss. Hearing in Children. 1984;3(1):21. 42. Keefe DH, Bulen JC, Arehart KH, Burns EM. Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am. 1993;94(5):2617-2638. doi:10.1121/1.407347. 43. Holborow C. Eustachian tubal function. Changes in anatomy and function with age and the relationship of these changes to aural pathology. Arch Otolaryngol. 1970;92(6):624-626. doi:10.1001/archotol.1970.04310060096017. 44. Kitajiri M, Sando I, Takahara T. Postnatal development of the eustachian tube and its surrounding structures. Preliminary study. Ann Otol Rhinol Laryngol. 1987;96(2 Pt 1):191-198. doi:10.1177/000348948709600211. 45. Ishijima K, Sando I, Balaban C, Suzuki C, Takasaki K. Length of the eustachian tube and its postnatal development: computer-aided three-dimensional reconstruction and measurement study. Ann Otol Rhinol Laryngol. 2000;109(6):542-548. doi:10.1177/000348940010900603. 46. Helwany M, Tadi P. Embryology, Ear. Treasure Island (FL): StatPearls Publishing; 2021. 47. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci. 2002;25:51-101. doi:10.1146/annurev.neuro.25.112701.142849. 48. Luo ZX, Ruf I, Schultz JA, Martin T. Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proc Biol Sci. 2011;278(1702):28-34. doi:10.1098/rspb.2010.1148. 49. Raft S, Nowotschin S, Liao J, Morrow BE. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development. 2004;131(8):1801-1812. doi:10.1242/dev.01067. 50. Jeffery N, Spoor F. Prenatal growth and development of the modern human labyrinth. J Anat. 2004;204(2):71-92. doi:10.1111/j.1469-7580.2004.00250.x. 51. Wu DK, Kelley MW. Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol. 2012;4(8):a008409. doi:10.1101/cshperspect.a008409. 52. Abdala C, Keefee DH, Douglas H. Morphological and functional ear development. Human auditory development. Springer, New York, NY; 2012, p. 19-59. 53. Kacker SK, Deka RC. Auditory brainstem evoked responses in meniere’s disease. Indian Journal of Otolaryngology. 1986;38(1):14-17. 54. Eggermont JJ, Moore JK. Morphological and functional development of the auditory nervous system. Human auditory development. Springer, New York; 2012, p. 61-105. 55. Raininko R, Autti T, Vanhanen SL, Ylikoski A, Erkinjuntti T, Santavuori P. The normal brain stem from infancy to old age. A morphometric MRI study. Neuroradiology. 1994;36(5):364-368. doi:10.1007/BF00612119. 56. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327-348. doi:10.1007/s11065-010-9148-4. 57. Blakemore SJ. Development of the social brain in adolescence. J R Soc Med. 2012;105(3):111-116. doi:10.1258/jrsm.2011.110221. 58. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30(6):718-729. doi:10.1016/j.neubiorev.2006.06.001. 59. Wang YX. Advances in Experimental Medicine and Biology Preface; 2017, p. 967. 60. Barbara SC, Leonard V, Le W, Hari B. Individual differences in temporal perception and their implications for everyday listening. The Frequency-Following Response, Springer; 2017, p. 159-192. 61. Harold FS, Aina JG. Anatomy of the temporal bone with surgical implications. Lea & Febiger, 3rd edition; 1986. 62. Winckler JR, et al. New high‐resolution ground‐based studies of sprites. Journal of Geophysical Research: Atmospheres, Wiley; 1996. 63. Tomohito N, Yoshinori K. Using the petrous part of the temporal bone to estimate fetal age at death. Forensic Science International, Elsevier; 2015. 64. Stuart HC, Stevenson SS. In Mitchell-Nelson Textbook of Pediatrics, Saunders; 1950. 65. Krogman WM, Johnston FE. The physical growth of Philadelphia white children, age 7-17 years. Philadelphia Center for Research in Child Growth; 1965. 66. Krogman WM. Height, weight and bodily growth of American white and American Negro boys and girls of Philadelphia, age 6-14 years. Philadelphia Center for Research in Child Growth; 1960. 67. Meyer-Marcotty P, Böhm H, Linz C, Kochel J, Stellzig-Eisenhauer A, Schweitzer T. Three-dimensional analysis of cranial growth from 6 to 12 months of age. Eur J Orthod. 2014;36(5):489-496. doi:10.1093/ejo/cjt010. 68. Swearingen JJ, Joseph WY. Determination of centers of gravity of children, sitting and standing. Federal Aviation Agency, Office of Aviation Medicine; 1965. 69. Huelke DF. An overview of anatomical considerations of infants and children in the adult world of automobile safety design. Annual Proceedings/Association for the Advancement of Automotive Medicine, Vol. 42;1998, p. 93. 70. Henry M, J Parsons S. Morris’ Human Anatomy: A Complete Systematic Treatise. P. Blakiston’s Son & Company; 1925. 71. Manzanares MC, Goret-Nicaise M, Dhem A. Metopic sutural closure in the human skull. J Anat. 1988;161:203-215. J Anat. 72. Chopra SRK. The cranial suture closure in monkeys. Proceedings of the Zoological Society of London. Vol. 128. Blackwell Publishing, Oxford, UK; 1957; p. 67-112. 73. Cohen MM Jr. Sutural biology and the correlates of craniosynostosis. Am J Med Genet. 1993;47(5):581-616. doi:10.1002/ajmg.1320470507. 74. Voigt M, Meyer-Kahrweg LM, Landau-Crangle E, et al. Individualized birth length and head circumference percentile charts based on maternal body weight and height. J Perinat Med. 2020;48(7):656-664. doi:10.1515/jpm-2020-0085. Journal of Perinatal Medicine. 2020 Sep 1;48(7):656–64. 75. Baum JD, Searls D. Head shape and size of pre-term low-birthweight infants. Dev Med Child Neurol. 1971;13(5):576-581. doi:10.1111/j.1469-8749.1971.tb08320.x. Vol. 13. 76. Human Phenotypes [Internet]. 2018 [Date of Access 10.02.2022]. Access adress: http://humanphenotypes.net/metrics/heightlengthindex.html. 77. Bunak V. Metodika antropometricheskih issledovanij [Method of anthropometric studies]. Gosmedizdat, Moscow; 1931, p. 168. 78. Vishal MS, Chikatapu C. The Study Of Vertical Cephalic Index (Length-Height Index) And Transverse Cephalic Index (Breadth-Height Index) Of Andhra Region (India). Asian Journal of Medical Sciences. 2012;3(3):6-11. 79. Gentry S, Claud AB. The anatomy and biology of the human skeleton. Texas A&M University Press; 1988. 80. Farkas LG, Posnick JC, Hreczko TM. Anthropometric growth study of the head. Cleft Palate Craniofac J. 1992;29(4):303-308. doi:10.1597/1545-1569_1992_029_0303_agsoth_2.3.co_2. 81. Martini M, Klausing A, Lüchters G, Heim N, Messing-Jünger M. Head circumference - a useful single parameter for skull volume development in cranial growth analysis?. Head Face Med. 2018;14(1):3. 82. Bushby KM, Cole T, Matthews JN, Goodship JA. Centiles for adult head circumference. Arch Dis Child. 1992;67(10):1286-1287. doi:10.1136/adc.67.10.1286. 83. Smit DJ, Luciano M, Bartels M, et al. Heritability of head size in Dutch and Australian twin families at ages 0-50 years. Twin Res Hum Genet. 2010;13(4):370-380. doi:10.1375/twin.13.4.370. 84. Ahmet RÖ, Gürbüz H, Ayata A, Çetin H. Adult head circumferences and centiles. Journal of Turgut Ozal Medical Center. 1997;4(3):261-264. 85. Kamdar MR, Gomez RA, Ascherman JA. Intracranial volumes in a large series of healthy children. Plast Reconstr Surg. 2009;124(6):2072-2075. doi:10.1097/PRS.0b013e3181bcefc4. 86. Falk D, Hildebolt C, Smith K, et al. LB1’s virtual endocast, microcephaly, and hominin brain evolution. J Hum Evol. 2009;57(5):597-607. doi:10.1016/j.jhevol.2008.10.008. 87. Vannucci RC, Barron TF, Lerro D, Antón SC, Vannucci SJ. Craniometric measures during development using MRI. Neuroimage. 2011;56(4):1855-1864. doi:10.1016/j.neuroimage.2011.03.044. 88. Cooke RW, Lucas A, Yudkin PL, Pryse-Davies J. Head circumference as an index of brain weight in the fetus and newborn. Early Hum Dev. 1977;1(2):145-149. doi:10.1016/0378-3782(77)90015-9. 89. Bartholomeusz HH, Courchesne E, Karns CM. Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics. 2002;33(5):239-241. doi:10.1055/s-2002-36735. 90. Sgouros S, Goldin JH, Hockley AD, Wake MJ, Natarajan K. Intracranial volume change in childhood. J Neurosurg. 1999;91(4):610-616. doi:10.3171/jns.1999.91.4.0610. 91. Smith K, Politte D, Reiker G, et al. Automated measurement of skull circumference, cranial index, and braincase volume from pediatric computed tomography. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3977-3980. doi:10.1109/EMBC.2013.6610416. 92. Seeberger R, Hoffmann J, Freudlsperger C, et al. Intracranial volume (ICV) in isolated sagittal craniosynostosis measured by 3D photocephalometry: A new perspective on a controversial issue. J Craniomaxillofac Surg. 2016;44(5):626-631. doi:10.1016/j.jcms.2016.01.023. 93. Kyriakopoulou V, Vatansever D, Davidson A. Normative biometry of the fetal brain using magnetic resonance imaging. Brain Struct Funct. 2017;222(5):2295-2307. doi:10.1007/s00429-016-1342-6. 94. Marcus JR, Domeshek LF, Das R, et al. Objective three-dimensional analysis of cranial morphology. Eplasty. 2008;8:e20. 95. Vannucci RC, Barron TF, Lerro D, Antón SC, Vannucci SJ. Craniometric measures during development using MRI. Neuroimage. 2011;56(4):1855-1864. doi:10.1016/j.neuroimage.2011.03.044. 96. Yepes-Calderon F, Wihardja F, Sloan A, Kim J, Nelson MD, McComb JG. Measuring Maximum Head Circumference Within the Picture Archiving and Communication System: A Fully Automatic Approach. Front Pediatr. 2021;9:608122. doi:10.3389/fped.2021.608122. 97. Koch RW, Ladak HM, Elfarnawany M, Agrawal SK. Measuring Cochlear Duct Length - a historical analysis of methods and results. J Otolaryngol Head Neck Surg. 2017;46(1):19. doi:10.1186/s40463-017-0194-2. 98. Ulehlová L, Voldrich L, Janisch R. Correlative study of sensory cell density and cochlear length in humans. Hear Res. 1987;28(2-3):149-151. doi:10.1016/0378-5955(87)90045-1. 99. Ketten DR, Skinner MW, Wang G, Vannier MW, Gates GA, Neely JG. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol Suppl. 1998;175:1-16. 100. Dimopoulos P, Muren C. Anatomic variations of the cochlea and relations to other temporal bone structures. Acta Radiol. 1990;31(5):439-444. 101. Mistrík P, Jolly C. Optimal electrode length to match patient specific cochlear anatomy. Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133 Suppl 1:S68-S71. doi:10.1016/j.anorl.2016.05.001. 102. Hochmair I, Hochmair E, Nopp P, Waller M, Jolly C. Deep electrode insertion and sound coding in cochlear implants. Hear Res. 2015;322:14-23. doi:10.1016/j.heares.2014.10.006. 103. Kiefer J, Pok M, Adunka O, et al. Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiol Neurootol. 2005;10(3):134-144. doi:10.1159/000084023. 104. Gstoettner W, Kiefer J, Baumgartner WD, Pok S, Peters S, Adunka O. Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol. 2004;124(4):348-352. doi:10.1080/00016480410016432. 105. Braun K, Böhnke F, Stark T. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol. 2012;132(6):603-613. doi:10.3109/00016489.2011.653670. 106. Meng J, Li S, Zhang F, Li Q, Qin Z. Cochlear size and shape variability and implications in cochlear implantation surgery. Otology and Neurotology. 2016;37(9):1307–13. 107. Elfarnawany M, Alam SR, Rohani SA, Zhu N, Agrawal SK, Ladak HM. Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea. J Microsc. 2017;265(3):349-357. doi:10.1111/jmi.12507. 108. Helpard L, Li H, Rask-Andersen H, Ladak HM, Agrawal SK. Characterization of the human helicotrema: implications for cochlear duct length and frequency mapping. J Otolaryngol Head Neck Surg. 2020;49(1):2. Published 2020 Jan 6. doi:10.1186/s40463-019-0398-8. 109. Wright A, Davis A, Bredberg G, et al. Hair cell distributions in the normal human cochlea. A report of a European working group. Acta Otolaryngol Suppl. 1987;436:15-24. doi:10.3109/00016488709124972. 110. Guild SR. A graphic reconstruction method for the study of the organ of Corti. Anat Rec. 1921;22:140-157. 111. Gulya AJ. Anatomy of the temporal bone with surgical implications. CRC Press; 2007. 112. Takagi A, Sando I. Computer-aided three-dimensional reconstruction: a method of measuring temporal bone structures including the length of the cochlea. Ann Otol Rhinol Laryngol. 1989;98(7 Pt 1):515-522. doi:10.1177/000348948909800705. 113. Schurzig D, Pietsch M, Erfurt P, Timm ME, Lenarz T, Kral A. A cochlear scaling model for accurate anatomy evaluation and frequency allocation in cochlear implantation. Hear Res. 2021;403:108166. doi:10.1016/j.heares.2020.108166. 114. Armstrong SD, Bloch JI, Houde P, Silcox MT. Cochlear labyrinth volume in euarchontoglirans: implications for the evolution of hearing in primates. Anat Rec (Hoboken). 2011;294(2):263-266. doi:10.1002/ar.21298. 115. Makishima T, Hochman L, Armstrong P, et al. Inner ear dysfunction in caspase-3 deficient mice. BMC Neurosci. 2011;12:102. Published 2011 Oct 12. doi:10.1186/1471-2202-12-102. 116. Coleman MN, Colbert MW. Correlations between auditory structures and hearing sensitivity in non-human primates. J Morphol. 2010;271(5):511-532. doi:10.1002/jmor.10814. 117. West CD. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am. 1985;77(3):1091-1101. doi:10.1121/1.392227. 118. Kirk EC, Gosselin-Ildari AD. Cochlear labyrinth volume and hearing abilities in primates. Anat Rec (Hoboken). 2009;292(6):765-776. doi:10.1002/ar.20907. 119. Douglas W, Darlene RK. Marine mammal sensory systems. Biology of marine mammals; 1999, p. 117-175. 120. Echteler SM, Richard RF, Popper NA. Structure of the mammalian cochlea. Comparative hearing: mammals. Springer, New York; 1994, p. 134-171. 121. Gerald F. Hearing in extinct cetaceans as determined by cochlear structure. Journal of Paleontology, JSTOR; 1976, p. 133-152. 122. Geisler JH, Luo Z. The petrosal and inner ear of Herpetocetus (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. Journal of Paleontology. 1996;70(6):1045-1066. 123. Eric GE, Timothy R. Morphology and variation within the bony labyrinth of zhelestids (Mammalia, Eutheria) and other therian mammals. Journal of Vertebrate Paleontology. 2011;31(3):658-675. 124. Beals ME, Frayer DW, Radovčić J, Hill CA. Cochlear labyrinth volume in Krapina Neandertals. J Hum Evol. 2016;90:176-182. doi:10.1016/j.jhevol.2015.09.005. 125. Greenwood DD. A cochlear frequency-position function for several species--29 years later. J Acoust Soc Am. 1990;87(6):2592-2605. doi:10.1121/1.399052. 126. Schurzig D, Timm ME, Batsoulis C, et al. A Novel Method for Clinical Cochlear Duct Length Estimation toward Patient-Specific Cochlear Implant Selection. OTO Open. 2018;2(4):2473974X18800238. doi:10.1177/2473974X18800238. 127. Erixon E, Högstorp H, Wadin K, Rask-Andersen H. Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol. 2009;30(1):14-22. doi:10.1097/MAO.0b013e31818a08e8. 128. Baskent D, Shannon RV. Speech recognition under conditions of frequency-place compression and expansion. The Journal of the Acoustical Society of America, 113(4), 2064-2076. 129. Ekdale EG. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals. PLoS One. 2015; 26;10(8):e0137149. doi:10.1371/journal.pone.0066624. 130. Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA. Cochleostomy versus round window insertions: influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otol Neurotol. 2014;35(4):613-618. doi:10.1097/MAO.0000000000000269. 131. Gani M, Valentini G, Sigrist A, Kós MI, Boëx C. Implications of deep electrode insertion on cochlear implant fitting. J Assoc Res Otolaryngol. 2007;8(1):69-83. doi:10.1007/s10162-006-0065-4. 132. Kalkman RK, Briaire JJ, Dekker DM, Frijns JH. Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hear Res. 2014;315:10-24. doi:10.1016/j.heares.2014.06.003. 133. Roy AT, Penninger RT, Pearl MS, et al. Deeper Cochlear Implant Electrode Insertion Angle Improves Detection of Musical Sound Quality Deterioration Related to Bass Frequency Removal. Otol Neurotol. 2016;37(2):146-151. doi:10.1097/MAO.0000000000000932. 134. O’Connell BP, Hunter JB, Gifford RH, et al. Electrode Location and Audiologic Performance After Cochlear Implantation: A Comparative Study Between Nucleus CI422 and CI512 Electrode Arrays. Otol Neurotol. 2016;37(8):1032-1035. doi:10.1097/MAO.0000000000001140. 135. O’Connell BP, Cakir A, Hunter JB, et al. Electrode Location and Angular Insertion Depth Are Predictors of Audiologic Outcomes in Cochlear Implantation. Otol Neurotol. 2016;37(8):1016-1023. doi:10.1097/MAO.0000000000001125. 136. Büchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One. 2017;12(5):e0174900. doi:10.1371/journal.pone.0174900. 137. Stakhovskaya O, Sridhar D, Bonham BH, Leake PA. Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol. 2007;8(2):220-233. doi:10.1007/s10162-007-0076-9. 138. Liberman MC. Single-neuron labeling in the cat auditory nerve. Science. 1982;216(4551):1239-1241. doi:10.1126/science.7079757. 139. Falbo C. The golden ratio-A contrary viewpoint. The College Mathematics Journal. 2005;36(2):123-134. 140. Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci. 2006;7(11):837-849. doi:10.1038/nrn1987. 141. Manoussaki D, Dimitriadis EK, Chadwick RS. Cochlea’s graded curvature effect on low frequency waves. Phys Rev Lett. 2006;96(8):088701. doi:10.1103/PhysRevLett.96.088701. 142. Gunz P, Ramsier M, Kuhrig M, Hublin JJ, Spoor F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J Anat. 2012;220(6):529-543. doi:10.1111/j.1469-7580.2012.01493.x. 143. Coleman MN, Colbert MW. Correlations between auditory structures and hearing sensitivity in non-human primates. J Morphol. 2010;271(5):511-532. doi:10.1002/jmor.10814. 144. Manley GA. Evolutionary paths to mammalian cochleae. J Assoc Res Otolaryngol. 2012;13(6):733-743. doi:10.1007/s10162-012-0349-9. 145. Cantos R, Cole LK, Acampora D, Simeone A, Wu DK. Patterning of the mammalian cochlea. Proc Natl Acad Sci U S A. 2000;97(22):11707-11713. doi:10.1073/pnas.97.22.11707. 146. Dabdoub A, Puligilla C, Jones JM, et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A. 2008;105(47):18396-18401. doi:10.1073/pnas.0808175105. 147. Nishimura T, Hosoi H, Saito O, et al. Effect of fixation place on airborne sound in cartilage conduction. J Acoust Soc Am. 2020;148(2):469. doi:10.1121/10.0001671. 148. Terino EO, Edwards MC. Alloplastic contouring for suborbital, maxillary, zygomatic deficiencies. Facial Plast Surg Clin North Am. 2008;16(1):33-v. doi:10.1016/j.fsc.2007.09.006. 149. Gülekon IN, Turgut HB. The external occipital protuberance: can it be used as a criterion in the determination of sex? J Forensic Sci. 2003;48(3):513-516. 150. Breitsprecher T, Dhanasingh A, Schulze M, et al. CT imaging-based approaches to cochlear duct length estimation-a human temporal bone study. Eur Radiol. 2022;32(2):1014-1023. doi:10.1007/s00330-021-08189-x. 151. Lenarz T, Stover T, Buechner A, et al. Temporal bone results and hearing preservation with a new straight electrode. Audiol Neurootol. 2006;11 Suppl 1:34-41. doi:10.1159/000095612. 152. Lan MY, Shiao JY, Ho CY, Hung HC. Measurements of normal inner ear on computed tomography in children with congenital sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2009;266(9):1361-1364. doi:10.1007/s00405-009-0923-x. 153. Purcell D, Johnson J, Fischbein N, Lalwani AK. Establishment of normative cochlear and vestibular measurements to aid in the diagnosis of inner ear malformations. Otolaryngol Head Neck Surg. 2003;128(1):78-87. doi:10.1067/mhn.2003.51. 154. Pelliccia P, Venail F, Bonafé A, et al. Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital. 2014;34(1):42-49. 155. Waldeck S, Falck C, Chapot R, Brockmann M, Overhoff D. Determination of Cochlear Duct Length With 3D Versus Two-dimensional Methods: A Retrospective Clinical Study of Imaging by Computed Tomography and Cone Beam Computed Tomography. In Vivo. 2021;35(6):3339-3344. doi:10.21873/invivo.12631. 156. Sato H, Sando I, Takahashi H. Sexual dimorphism and development of the human cochlea. Computer 3-D measurement. Acta Otolaryngol. 1991;111(6):1037-1040. doi:10.3109/00016489109100753. 157. Alanazi A, Alzhrani F. Comparison of cochlear duct length between the Saudi and non-Saudi populations. Ann Saudi Med. 2018;38(2):125-129. doi:10.5144/0256-4947.2018.125. 158. Alnafjan FF, Allan SM, McMahon CM, da Cruz MJ. Assessing Cochlear Length Using Cone Beam Computed Tomography in Adults With Cochlear Implants. Otol Neurotol. 2018;39(9):e757-e764. doi:10.1097/MAO.0000000000001934. 159. Eser MB, Atalay B, Kalcıoğlu MT. Is Cochlear Length Related to Congenital Sensorineural Hearing Loss: Preliminary Data. J Int Adv Otol. 2021;17(1):1-8. doi:10.5152/iao.2020.7863. 160. Takahashi M, Arai Y, Sakuma N, et al. Cochlear volume as a predictive factor for residual-hearing preservation after conventional cochlear implantation. Acta Otolaryngol. 2018;138(4):345-350. doi:10.1080/00016489.2017.1393840. 161. An SY, An CH, Lee KY, Jang JH, Choung YH, Lee SH. Diagnostic role of cone beam computed tomography for the position of straight array. Acta Otolaryngol. 2018;138(4):375-381. doi:10.1080/00016489.2017.1404639. 162. Skinner MW, Ketten DR, Holden LK, et al. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol. 2002;3(3):332-350. doi:10.1007/s101620020013. 163. Gasser RF. The development of the facial nerve in man. Ann Otol Rhinol Laryngol. 1967;76(1):37-56. doi:10.1177/000348946707600103. 164. Monkhouse WS. The anatomy of the facial nerve. Ear Nose Throat J. 1990;69(10):677-687. 165. Müller F, O’Rahilly R. The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat. 1980;159(1):33-58. doi:10.1002/aja.1001590105. 166. Gasser RF, Shigihara S, Shimada K. Three-dimensional development of the facial nerve path through the ear region in human embryos. Ann Otol Rhinol Laryngol. 1994;103(5 Pt 1):395-403. doi:10.1177/000348949410300510. 167. Lin YC, Chen CP. Characterization of small-to-medium head-and-face dimensions for developing respirator fit test panels and evaluating fit of filtering facepiece respirators with different faceseal design. PLoS One. 2017;12(11):e0188638. doi:10.1371/journal.pone.0188638. 168. Aoyagi M, Kim Y, Yokoyama J, Kiren T, Suzuki Y, Koike Y. Head size as a basis of gender difference in the latency of the brainstem auditory-evoked response. Audiology. 1990;29(2):107-112. doi:10.3109/00206099009081652. 169. Berman K, Fahri ÖA. Türk Erkek Toplumunun Antropometrik Ölçülerinin Belirlenmesi, ULAKBIM; 1989. 170. Lacko D, Huysmans T, Parizel PM, et al. Evaluation of an anthropometric shape model of the human scalp. Appl Ergon. 2015;48:70-85. doi:10.1016/j.apergo.2014.11.008. 171. Matthews H, Penington T, Saey I, Halliday J, Muggli E, Claes P. Spatially dense morphometrics of craniofacial sexual dimorphism in 1-year-olds. J Anat. 2016;229(4):549-559. doi:10.1111/joa.12507. 172. Grover M, Sharma S, Singh SN, Kataria T, Lakhawat RS, Sharma MP. Measuring cochlear duct length in Asian population: worth giving a thought! Eur Arch Otorhinolaryngol. 2018;275(3):725-728. doi:10.1007/s00405-018-4868-9 173. Singla A, Sahni D, Gupta A. K, Aggarwal A, Gupta T. Surgical anatomy of the basal turn of the human cochlea as pertaining to cochlear implantation. Otology & Neurotology. 2015;36(2):323-328. 174. Atalay B, Eser MB, Kalcıoglu MT. The Length of the Organ of Corti in Humankind: A Meta-Analysis; 2020. 175. Khurayzi T, Almuhawas F, Sanosi A. Direct measurement of cochlear parameters for automatic calculation of the cochlear duct length. Ann Saudi Med. 2020;40(3):212-218. doi:10.5144/0256-4947.2020.218. 176. Rosas A, Ferrando A, Bastir M, et al. Neandertal talus bones from El Sidrón site (Asturias, Spain): A 3D geometric morphometrics analysis. Am J Phys Anthropol. 2017;164(2):394-415. doi:10.1002/ajpa.23280. 177. Arsuaga JL, Martínez I, Arnold LJ, et al. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science. 2014;344(6190):1358-1363. doi:10.1126/science.1253958. 178. Ponce de León MS, Bienvenu T, Akazawa T, Zollikofer CP. Brain development is similar in Neanderthals and modern humans. Curr Biol. 2016;26(14):R665-R666. doi:10.1016/j.cub.2016.06.022. 179. Herculano-Houzel S, Ribeiro P, Campos L, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav Evol. 2011;78(4):302-314. doi:10.1159/000330825. 180. Sakai T, Hirata S, Fuwa K, et al. Fetal brain development in chimpanzees versus humans. Curr Biol. 2012;22(18):R791-R792. doi:10.1016/j.cub.2012.06.062.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/26192
dc.description.abstractAdalılar, İ., The Relation Between Human Cochlear Duct Length And Head Size assessed by MRI and CBCT, Hacettepe University Graduate School of Health Sciences Audiology Department of Audiology Master of Science Thesis, Ankara, 2022. The cochlea differs in length and shape among individuals and this might be due to the fact that it is affected by spatial constraints. The head size may restrict the cochlea which is located in the temporal bone, and individuals with smaller head sizes may have shorter cochlear duct lengths (CDL). On the other hand, normal-hearing participants with longer CDLs have an increase in low-frequency sensitivity. Therefore, not only the CDL but also auditory outcomes are thought to be significantly affected by cochlear structures and the factors affecting CDL may also affect outcomes of cochlear implantation. The head in which the cochlea is located and develops together, as well as, the body height in the human body are structures that continue to grow until certain periods after birth. Despite differences in the developmental process, the cochlea, head, and height may have a genetic makeup that is interconnected and affect one another. Hence, these growing parts of the body may influence the CDL during the development process. The present study was conducted with the aim of finding any relations between mentioned structures. It consisted of a study group that contained 112 postlingual-deafened adult participants who were cochlear implant users. Cone Beam Computed Tomography (CBCT) images of the cochlea and Magnetic Resonance (MR) images of the head were performed for each participant in the present study group. CDLs were determined via CBCT, head size measures were determined by 3D conversion via MRI, and the body height was completed. In terms of CDL, head size, and height: females had smaller averages than that males. The results of this study showed that CDL had not any significant correlation with head size but a weak correlation with height. Similar to the literature, the height and the head size showed statistically significant relationships with each other. Only CDL which was measured in the cochlea, may not be sufficient to demonstrate the effect of head size on the cochlea. Future studies might look at the links between the cochlear shape and its surroundings by using micro-CT.tr_TR
dc.language.isoentr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/embargoedAccesstr_TR
dc.subjectKoklear Kanal Uzunluğutr_TR
dc.subjectKoklear Şekiltr_TR
dc.subjectKafa Boyututr_TR
dc.subjectBTtr_TR
dc.subjectMRGtr_TR
dc.subject.lcshİnsan anatomisitr_TR
dc.subject.lcshİnsan anatomisitr_TR
dc.titleBT VE MRG İLE DEĞERLENDİRİLEN İNSAN KOKLEAR KANAL UZUNLUĞU VE KAFA BOYUTU ARASINDAKİ İLİŞKİtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetAdalılar, İ., BT VE MRG ile değerlendirilen insan koklear kanal uzunluğu ve kafa boyutu arasındaki ilişki, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Odyoloji Programı Yüksek Lisans Tezi, Ankara, 2022. Koklea bireyler arasında uzunluk ve şekil olarak farklılık gösterir ve bunun sebebi kokleanın uzamsal kısıtlamalardan etkilenmesi olabilir. Kafa boyutu, temporal kemikte bulunan kokleayı kısıtlayabilir ve kafa boyutu daha küçük olan bireylerin daha kısa koklear kanal uzunluğu (KKU)’na sahip olması olasıdır. Bunun dışında, daha uzun KKU’ya sahip normal işiten katılımcılar daha fazla alçak frekans duyarlılığına sahiptir. Bu nedenle, sadece KKU’nun değil, işitsel sonuçların da koklear yapılardan önemli ölçüde etkilendiği ve KKU’yu etkileyen faktörlerin koklear implantasyon sonuçlarını etkileyebileceği düşünülmektedir. Kokleanın bulunduğu ve birlikte geliştiği kafa ve vücut boy uzunluğu doğumdan sonra belirli dönemlere kadar büyümeye devam eden yapılardır. Gelişim sürecindeki farklılıklara rağmen, koklea, kafa ve vücut boy uzunluğu birbiriyle bağlantılı ve birbirini etkileyen genetik yapıya sahip olabilir. Bu nedenle, vücudun bu büyüyen kısımları, gelişim sürecinde KKU’yu etkileyebilir. Bu araştırma, bahsedilen yapılar arasındaki herhangi bir ilişkiyi bulmak amacıyla gerçekleştirilmiştir. Araştırma, koklear implant kullanıcısı olan 112 postlingual işitme kayıplı yetişkin katılımcının yer aldığı bir çalışma grubundan oluşmuştur. Çalışma grubundaki her katılımcı için kokleanın Koni Işınlı Bilgisayarlı Tomografi (BT) görüntüleri ve kafanın Manyetik Rezonans (MR) görüntüleri elde edilmiştir. Koni Işınlı BT ile belirlenen KKU, 3 boyutlu dönüştürülen MR görüntüleri ile belirlenen kafa boyutu ölçümleri ve vücut boy uzunluğu çalışmaya dahil edildi. KKU, kafa büyüklüğü ve boy varyasyonları için kadınların ortalamaları erkeklerden daha kısa bulundu. Bu çalışmanın sonuçları, KKU’nun kafa boyutu ile anlamlı bir korelasyona sahip olmadığını, ancak boy ile zayıf bir korelasyona sahip olduğunu göstermektedir. Literatürde olduğu gibi, vücut boy uzunluğu ve kafa büyüklüğü birbirleri ile istatistiksel olarak anlamlı ilişkiler göstermektedir. Kokleadan sadece KKU ölçülmüştür ve bu, kafa boyutunun koklea üzerinde etkisini göstermek için yeterli bir parametre olmayabilir. Gelecekteki çalışmalarda, mikro-BT aracılığıyla koklear şekil ve kokleayı çevreleyen yapılar arasındaki ilişkiler incelenebilir.tr_TR
dc.contributor.departmentOdyolojitr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2022-11-14T07:57:45Z
dc.fundingYoktr_TR
dc.subtypelearning objecttr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record