• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leveragıng Semantıc Salıency Maps For Query-Specıfıc Vıdeo Summarızatıon

View/Open
10470574.pdf (14.85Mb)
Date
2022
Author
Çizmeciler, Kemal
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Automatic video summarization is a technique that allows us to easily understand and analyze large amount of visual data. Methods in the literature do this by dividing the video into certain parts and assigning a significance value to these parts. In query-based summary extraction, how query terms can be included in the importance value has been investigated. In this study, it was investigated which criteria could be effective in assigning importance value in query-based summarization, and it is suggested that semantic attributes and visual salience maps could contribute. In addition, these concepts are also included in the query terms, since the query terms may be the place where the activity is carried out or the actor performing the activity, rather than just some activities. In the experiments, it has been observed that the inclusion of semantic and visual saliency maps in the diversity term, which is one of the 3 functions included in the optimization, makes a positive contribution. Two other functions considered in optimization are representation and query term relevance. In short, with the thought that the places people look at the video may change when they view the video within a certain task (Task-Oriented Attention), it is useful to predetermine the relevant parts in the video and to give extra weight to these sections in the summaries. Detailed experiments and visual results on two large datasets have demonstrated the correctness of the proposed hypothesis.
URI
http://hdl.handle.net/11655/26966
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [177]
xmlui.dri2xhtml.METS-1.0.item-citation
Cizmeciler, Kemal, Erkut Erdem, and Aykut Erdem. "Leveraging semantic saliency maps for query-specific video summarization." Multimedia Tools and Applications 81.12 (2022): 17457-17482.
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV