• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MIWGAN-GP: Missing Data Imputation using Wasserstein Generative Adversarial Nets with Gradient Penalty

View/Open
Ebru Uçgun Ergün Master Thesis (1.443Mb)
Date
2022
Author
Uçgun Ergün, Ebru
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
The success and dependability of IoT applications are heavily dependent on data quality. Due to hardware problems, synchronization challenges, inconsistent network connectivity, and manual system shutdown, produced data might be missing, erroneous, and noisy. These missing or erroneous values can also occur on health, military and surveillance data and result in errors can also cause important errors in mission systems. If the mission critical system is used in medical domain such missing data problems may affect human life. Hence, Missing values should be imputed appropriately to avoid erroneous judgments in IoT healthcare systems and other critical systems. In addition, Naive Bayes, K-Nearest Neighbors, Decision Tree and XGboost algorithms are applied in the IoT health sector in this study to show in detail the effect of missing data on the outputs of machine learning algorithms. Following that, we compare different strategies for imputing missing data. The classification methods used were compared both for each defect percentage and with different imputation methods. In this thesis, a new GAN-based approach is proposed to complete the missing data. The success of the proposed method is compared with classical imputation methods. Error measurements are realized with four different error metrics. In addition, the success of the proposed GAN-based model is demonstrated by applying different classification methods on the data set filled with this method.
URI
http://hdl.handle.net/11655/26969
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [177]
xmlui.dri2xhtml.METS-1.0.item-citation
UÇGUN ERGÜN, E. (2022). MIWGAN-GP: Missing Data Imputation using Wasserstein Generative Adversarial Nets with Gradient Penalty, Hacettepe University
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV