Abstract
The aim of this study was to investigate the effect of isokinetic exercise training given in the 4th month and continued for 8 weeks on knee muscle strength in individuals undergoing anterior cruciate ligament (ACL) reconstruction. Twenty individuals who underwent ACL reconstruction with hamstring graft were included in the study (age: 30.85± 9.10 yrs, height: 178.90±9.38 cm, bmi: 25.66±2.93 kg/m²). Individuals were taken to exercise training by evaluating in the isokinetic system in the 16th weeks after the reconstruction and the test was repeated in the 24th weeks. Muscle strength assessment was performed in the isokinetic system (ISOMED 2000), at angular speeds of 60 º/sec (5 repetitions) and 180 º/sec (10 repetitions). Peak Torque Hamstring/Body weight, Peak Torque Quadriceps/Body weight, Hamstring/Quadriceps ratio were evaluated. Hamstring concentric-quadriceps concentric, hamstring isometric, quadriceps isometric, stability-coordination training was given 3 days a week for 8 weeks. All data were analyzed using SPSS 21 software. Paired T-test was used to determine the differences before and after training. As a result of the study, concentric hamstring strength was found to be greater at 24th weeks than at 16th weeks in the operated knee (p=0,000) and non-operated knee (p=0,003) at an angular speed of 60º/sec, and in the non-operated knee (p=0,000) at an angular speed of 180º/sec. There was no difference in concentric hamstring value between the times in the operated knee at 180 angular speeds (p>0,05). Concentric quadriceps strength was found to be greater at 24th weeks than 16th weeks in the operated (p=0.000) and non-operated (p>0,05) knee at an angular speed of 60 º/sec, in the operated (p=0.000) and non-operated knee (p=0.05) at an angular speed of 180º/sec. It was observed that the concentric hamstring/quadriceps ratio decreased at angular speed of 60º/sec in the operated knee in the 24th week compared to the 16th week, while this ratio increased in the non-operated knee (p>0,05). It was observed that concentric H/Q ratio in operated and non-operated knee, at an angular speed of 180°/sec. decreased in the 24th week compared to the 16th week (p>0,05). In conclusion, it was found that isokinetic training given from the 16th week to the 24th week was effective in increasing muscular strength after ACL reconstruction.
xmlui.mirage2.itemSummaryView.Collections
xmlui.dri2xhtml.METS-1.0.item-citation
1. Kiapour AM, Murray MM. Basic science of anterior cruciate ligament injury and repair. Bone Joint Res. 2014;3(2):20-31.
2. Otzel DM, Chow JW, Tillman MD. Long-term deficits in quadriceps strength and activation following anterior cruciate ligament reconstruction. Phys Ther Sport. 2015;16(1):22-8.
3. Lim JM, Cho JJ, Kim TY, Yoon BC. Isokinetic knee strength and proprioception before and after anterior cruciate ligament reconstruction: A comparison between home-based and supervised rehabilitation. J Back Musculoskelet Rehabil. 2019;32(3):421-9.
4. Di Stasi SL, Logerstedt D, Gardinier ES, Snyder-Mackler L. Gait patterns differ between ACL-reconstructed athletes who pass return-to-sport criteria and those who fail. Am J Sports Med. 2013;41(6):1310-8.
5. Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750-9.
6. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39(3):538-43.
7. Vidmar MF, Baroni BM, Michelin AF, Mezzomo M, Lugokenski R, Pimentel GL, et al. Isokinetic eccentric training is more effective than constant load eccentric training for quadriceps rehabilitation following anterior cruciate ligament reconstruction: a randomized controlled trial. Braz J Phys Ther. 2020;24(5):424-32.
8. Harput G, Kilinc HE, Ozer H, Baltaci G, Mattacola CG. Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. Journal of sport rehabilitation. 2015;24(4):398-404.
9. Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med. 2010;40(4):303-26.
10. Undheim MB, Cosgrave C, King E, Strike S, Marshall B, Falvey É, et al. Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? A systematic review and a protocol recommendation. Br J Sports Med. 2015;49(20):1305-10.
11. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22-9.
12. Feiring DC, Ellenbecker TS, Derscheid GL. Test-retest reliability of the biodex isokinetic dynamometer. J Orthop Sports Phys Ther. 1990;11(7):298-300.
13. Duthon V, Barea C, Abrassart S, Fasel J, Fritschy D, Ménétrey J. Anatomy of the anterior cruciate ligament. Knee surgery, sports traumatology, arthroscopy. 2006;14(3):204-13.
14. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL. Quantitative analysis of human cruciate ligament insertions. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1999;15(7):741-9.
15. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A. Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. The American journal of sports medicine. 2006;34(5):787-92.
16. van Eck CF, Lesniak BP, Schreiber VM, Fu FH. Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy. 2010;26(2):258-68.
17. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH. Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am. 2006;88(suppl_4):2-10.
18. Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am. 2010;92(6):1418-26.
19. Giuliani JR, Kilcoyne KG, Rue JP. Anterior cruciate ligament anatomy: a review of the anteromedial and posterolateral bundles. J Knee Surg. 2009;22(2):148-54.
20. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res. 1997;15(2):285-93.
21. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329-35.
22. Schultz RA, Miller DC, Kerr CS, Micheli L. Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am. 1984;66(7):1072-6.
23. Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. Anat Rec. 1986;214(2):204-9.
24. Hogervorst T, Brand RA. Mechanoreceptors in joint function. J Bone Joint Surg Am. 1998;80(9):1365-78.
25. Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl). 1999;200(3):325-34.
26. Boden B, Dean G. Feagin JAJr & Garrett WEJr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573-8.
27. Faunø P, Jakobsen BW. Mechanism of anterior cruciate ligament injuries in soccer. International journal of sports medicine. 2006;27(01):75-9.
28. Hame SL, Oakes DA, Markolf KL. Injury to the anterior cruciate ligament during alpine skiing: a biomechanical analysis of tibial torque and knee flexion angle. The American journal of sports medicine. 2002;30(4):537-40.
29. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930-5.
30. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512-32.
31. Orchard J, Seward H, McGivern J, Hood S. Rainfall, evaporation and the risk of non-contact anterior cruciate ligament injury in the Australian Football League. Med J Aust. 1999;170(7):304-6.
32. Orchard JW, Powell JW. Risk of knee and ankle sprains under various weather conditions in American football. Med Sci Sports Exerc. 2003;35(7):1118-23.
33. Fuller CW, Dick RW, Corlette J, Schmalz R. Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 2: training injuries. Br J Sports Med. 2007;41 Suppl 1(Suppl 1):i27-32.
34. Ryder SH, Johnson RJ, Beynnon BD, Ettlinger CF. Prevention of ACL injuries. Journal of Sport Rehabilitation. 1997;6(2):80-96.
35. Beynnon B, Slauterbeck J, Padua D, Hewett T, editors. Update on ACL risk factors and prevention strategies in the female athlete. Journal of Sports Medicine. 2006;34(2):299-311
36. Myer GD, Ford KR, Hewett TE. The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol. 2005;15(2):181-9.
37. Haycock CE, Gillette JV. Susceptibility of women athletes to injury. Myths vs reality. Jama. 1976;236(2):163-5.
38. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831-42.
39. Hewett TE, Myer GD, Ford KR, Heidt RS, Jr., Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492-501.
40. Malina R. Timing and sequence of changes in growth, maturation, and performance during adolescence. Growth, maturation, and physical activity. Human Kinetics Publishers American Journal of Physical Antropology. 199;.91(1);134-135.
41. Huston LJ, Wojtys EM. Neuromuscular performance characteristics in elite female athletes. Am J Sports Med. 1996;24(4):427-36.
42. Markolf KL, Graff-Radford A, Amstutz HC. In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am. 1978;60(5):664-74.
43. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207-13.
44. Trimble MH, Bishop MD, Buckley BD, Fields LC, Rozea GD. The relationship between clinical measurements of lower extremity posture and tibial translation. Clin Biomech (Bristol, Avon). 2002;17(4):286-90.
45. Ostenberg A, Roos H. Injury risk factors in female European football. A prospective study of 123 players during one season. Scand J Med Sci Sports. 2000;10(5):279-85.
46. Liu SH, al-Shaikh R, Panossian V, Yang RS, Nelson SD, Soleiman N, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res. 1996;14(4):526-33.
47. Hewett TE, Zazulak BT, Myer GD. Effects of the menstrual cycle on anterior cruciate ligament injury risk: a systematic review. The American journal of sports medicine. 2007;35(4):659-68.
48. Booth FW, Tipton CM. Ligamentous strength measurements in pre-pubescent and pubescent rats. Growth. 1970;34(2):177-85.
49. Posthuma BW, Bass MJ, Bull SB, Nisker JA. Detecting changes in functional ability in women with premenstrual syndrome. Am J Obstet Gynecol. 1987;156(2):275-8.
50. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141-50.
51. Imran A, O'Connor J. Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1997;211(6):425-39.
52. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299-311.
53. Shaerf DA, Pastides PS, Sarraf KM, Willis-Owen CA. Anterior cruciate ligament reconstruction best practice: A review of graft choice. World J Orthop. 2014;5(1):23-9.
54. Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. Clin J Sport Med. 2012;22(4):349-55.
55. Filbay SR, Grindem H. Evidence-based recommendations for the management of anterior cruciate ligament (ACL) rupture. Best Pract Res Clin Rheumatol. 2019;33(1):33-47.
56. Welling W, Benjaminse A, Lemmink K, Dingenen B, Gokeler A. Progressive strength training restores quadriceps and hamstring muscle strength within 7 months after ACL reconstruction in amateur male soccer players. Phys Ther Sport. 2019;40:10-8.
57. van Melick N, van Cingel RE, Brooijmans F, Neeter C, van Tienen T, Hullegie W, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. British Journal of Sports Medicine. 2016;50(24):1506-15.
58. Blanchard S, Glasgow P. A theoretical model to describe progressions and regressions for exercise rehabilitation. Phys Ther Sport. 2014;15(3):131-5.
59. Bieler T, Sobol NA, Andersen LL, Kiel P, Løfholm P, Aagaard P, et al. The effects of high-intensity versus low-intensity resistance training on leg extensor power and recovery of knee function after ACL-reconstruction. Biomed Res Int. 2014;2014:278512. doi: 10.1155/2014/278512.
60. Ellenbecker TS, Davies GJ. The application of isokinetics in testing and rehabilitation of the shoulder complex. J Athl Train. 2000;35(3):338-50.
61. Hislop HJ, Perrine J. The isokinetic concept of exercise. Physical Therapy. 1967;47(1):114-7.
62. Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther. 1994;20(2):60-73.
63. Kannus P, Järvinen M. Prediction of torque acceleration energy and power of thigh muscles from peak torque. Med Sci Sports Exerc. 1989;21(3):304-7.
64. Kannus P. Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med. 1994;15 Suppl 1:S11-8.
65. Clark RA, Humphries B, Hohmann E, Bryant AL. The influence of variable range of motion training on neuromuscular performance and control of external loads. J Strength Cond Res. 2011;25(3):704-11.
66. Brown LE, Whitehurst M, Findley BW, Gilbert R, Buchalter DN. Isokinetic load range during shoulder rotation exercise in elite male junior tennis players. J Strength and Cond Res. 1995;9(3):160-64.
67. Clark RA, Humphries B, Hohmann E, Bryant AL. The influence of variable range of motion training on neuromuscular performance and control of external loads. The Journal of Strength & Conditioning Research. 2011;25(3):704-11.
68. Davies GJ. A compendium of isokinetics in clinical usage and rehabilitation techniques: S & S Publishers; 4th edition (January 1, 1992):1-21
69. Fleck SJ. Periodized strength training: a critical review. The Journal of Strength & Conditioning Research. 1999;13(1):82-9.
70. Risberg MA, Steffen K, Nilstad A, Myklebust G, Kristianslund E, Moltubakk MM, et al. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players. J Strength Cond Res. 2018;32(8):2314-23.
71. Johnson AK, Palmieri-Smith RM, Lepley LK. Contribution of Neuromuscular Factors to Quadriceps Asymmetry After Anterior Cruciate Ligament Reconstruction. J Athl Train. 2018;53(4):347-54.
72. Mendias CL, Lynch EB, Davis ME, Sibilsky Enselman ER, Harning JA, Dewolf PD, et al. Changes in circulating biomarkers of muscle atrophy, inflammation, and cartilage turnover in patients undergoing anterior cruciate ligament reconstruction and rehabilitation. Am J Sports Med. 2013;41(8):1819-26.
73. Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol. 2014 Mar 17;5:99.
74. Beynnon BD, Johnson RJ, Fleming BC. The science of anterior cruciate ligament rehabilitation. Clin Orthop Relat Res. 2002(402):9-20.
75. de Jong SN, van Caspel DR, van Haeff MJ, Saris DB. Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy. 2007;23(1):21-8.
76. Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. British journal of sports medicine. 2009;43(5):371-6.
77. Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. journal of orthopaedic & sports physical therapy. 2012;42(9):750-9.
78. Myer GD, Martin Jr L, Ford KR, Paterno MV, Schmitt LC, Heidt Jr RS, et al. No association of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction: evidence for objective return-to-sport criteria. The American journal of sports medicine. 2012;40(10):2256-63.
79. Houglum P. Therapeutic exercise for musculoskeletal injuries 3rd. ed. Champaign, USA, Human Kinetics Thomson-Shore Inc. 2010:199-254.
80. Kartus J, Movin T, Karlsson J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy. 2001;17(9):971-80.
81. Harris JD, Abrams GD, Bach BR, Williams D, Heidloff D, Bush-Joseph CA, et al. Return to sport after ACL reconstruction. Orthopedics. 2014;37(2):e103-8.
82. Kellis E, Baltzopoulos V. Isokinetic eccentric exercise. Sports Med. 1995;19(3):202-22.
83. Sole G, Hamrén J, Milosavljevic S, Nicholson H, Sullivan SJ. Test-retest reliability of isokinetic knee extension and flexion. Arch Phys Med Rehabil. 2007;88(5):626-31.
84. Baltzopoulos V, Brodie DA. Isokinetic dynamometry. Applications and limitations. Sports Med. 1989;8(2):101-16.
85. Clamann HP, Broecker KT. Relation between force and fatigability of red and pale skeletal muscles in man. Am J Phys Med. 1979;58(2):70-85.
86. Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging. 2008;28(2):113-9.
87. Cardone C, Menegassi Z, Emygdio R. Isokinetic assessment of muscle strength following anterior cruciate ligament reconstruction. Isokinetics and exercise science. 2004;12(3):173-7.
88. Ozmun JC, Mikesky AE, Surburg PR. Neuromuscular adaptations following prepubescent strength training. Med Sci Sports Exerc. 1994;26(4):510-4.
89. Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985). 2001;91(3):1168-75.
90. Esselman PC, de Lateur BJ, Alquist AD, Questad KA, Giaconi RM. Torque development in isokinetic training. Arch Phys Med Rehabil. 1991;72(10):723-8.
91. Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225-64.
92. Kınıklı GI, Yüksel I, Baltacı G, Atay OA. The effect of progressive eccentric and concentric training on functional performance after autogenous hamstring anterior cruciate ligament reconstruction: a randomized controlled study. Acta Orthop Traumatol Turc. 2014;48(3):283-9.
93. Anderson JL, Lamb SE, Barker KL, Davies S, Dodd CA, Beard DJ. Changes in muscle torque following anterior cruciate ligament reconstruction: a comparison between hamstrings and patella tendon graft procedures on 45 patients. Acta Orthop Scand. 2002;73(5):546-52.
94. Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405-24.
95. Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T. Cruciate ligament reflexes. J Electromyogr Kinesiol. 2002;12(3):177-82.
96. Tibone JE, Antich TJ. Electromyographic analysis of the anterior cruciate ligament-deficient knee. Clin Orthop Relat Res. 1993(288):35-9.
97. Clanton TO, Coupe KJ. Hamstring strains in athletes: diagnosis and treatment. J Am Acad Orthop Surg. 1998;6(4):237-48.
98. Orchard J, Marsden J, Lord S, Garlick D. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am J Sports Med. 1997;25(1):81-5.
99. More RC, Karras BT, Neiman R, Fritschy D, Woo SL, Daniel DM. Hamstrings--an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med. 1993;21(2):231-7.
100. Liu H, Lu W, Liang D, Geng H, Zhu W, Ouyang K, et al. Effect of isokinetic training of thigh muscle group on graft remodeling after anterior cruciate ligament reconstruction. Chinese Journal of Reparative and Reconstructive Surgery. 2019;33(9):1088-94.
101. Kannus P. Ratio of hamstring to quadriceps femoris muscles' strength in the anterior cruciate ligament insufficient knee. Relationship to long-term recovery. Phys Ther. 1988;68(6):961-5.
102. Kong PW, Burns SF. Bilateral difference in hamstrings to quadriceps ratio in healthy males and females. Phys Ther Sport. 2010;11(1):12-7.
103. Calmels PM, Nellen M, van der Borne I, Jourdin P, Minaire P. Concentric and eccentric isokinetic assessment of flexor-extensor torque ratios at the hip, knee, and ankle in a sample population of healthy subjects. Arch Phys Med Rehabil. 1997;78(11):1224-30.
104. Harput G, Tunay VB, Ithurburn MP. Quadriceps and Hamstring Strength Symmetry After Anterior Cruciate Ligament Reconstruction: A Prospective Study. J Sport Rehabil. 2020;30(1):1-8.
105. Aagaard P, Simonsen EB, Trolle M, Bangsbo J, Klausen K. Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode. Acta Physiol Scand. 1995;154(4):421-7.
106. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech (Bristol, Avon). 2007;22(5):543-50.
107. Harput G, Ulusoy B, Yildiz TI, Demirci S, Eraslan L, Turhan E, et al. Cross-education improves quadriceps strength recovery after ACL reconstruction: a randomized controlled trial. Knee Surgery, Sports Traumatology, Arthroscopy. 2019;27(1):68-75.