• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Enstitüler
  • Nörolojik Bilimler ve Psikiyatri Enstitüsü
  • Nörolojik Bilimler ve Psikiyatri Enstitüsü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Enstitüler
  • Nörolojik Bilimler ve Psikiyatri Enstitüsü
  • Nörolojik Bilimler ve Psikiyatri Enstitüsü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

OPTOGENETİK UYARIMLA NF-κB AKTİVASYONU YAPAN BİR YÖNTEMİN MSS'DE İNFLAMASYONUN PRİMER DEPRESYON PATOFİZYOLOJİSİNDEKİ ROLÜNÜN İNCELENMESİ AMACIYLA IN VIVO KOŞULLAR İÇİN GELİŞTİRİLMESİ

View/Open
Tez (26.28Mb)
Date
2023-01-05
Author
Esen, Emre Cem
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
One of the critical limitations of the studies examining the effects of neuro-inflammation on depression is not implementing a protocol compatible with the pathophysiology of primary depression instead of using a protocol that inflammation is triggered by a bacterial endotoxin such as lipopolysaccharide. In order to elucidate the complex relationship between neuro-inflammation and depression, it is necessary to develop a reliable model for neuro-inflammation originating from the brain. Based on this requirement, this thesis study was carried out in order to adapt a system with in vitro activity that triggers inflammation originating from the brain, similar to the inflammatory response triggered by stress in physiological conditions, to in vivo conditions. For this purpose CRY2PHR-DAI/CIB1-DAI cryptochrome receptors were transferred intrahippocampally with repeated plasmid injections and activated with repetitive optical stimulations. Plasmid injections and optical stimulation were performed with different protocols in order to determine the injection and optical stimulation dose and duration that would lead to optimal inflammation. However, an intense signal consistent with the mCherry signal was observed in the hippocampal region in the control groups that were not optically stimulated and were not injected with plasmid. It was evaluated that this may have arisen due to tissue trauma caused by repeated injection of the plasmid, and it was not possible to reliably determine the true signal within this signal intensity. In future studies, in order to minimize the inflammation caused by trauma due to interventional procedures, it is recommended to permanently express the plasmid by viruses instead of repetitive plasmid injections in methods to be developed to model inflammation in the brain, and to start optical stimulation 4-6 weeks after virus injection.
URI
http://hdl.handle.net/11655/29237
xmlui.mirage2.itemSummaryView.Collections
  • Nörolojik Bilimler ve Psikiyatri Enstitüsü Tez Koleksiyonu [17]
xmlui.dri2xhtml.METS-1.0.item-citation
1. Albert PR, Benkelfat C, Descarries L. The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci. 2012;367(1601):2378-81. 2. Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci. 2002;4(1):7-20. 3. Lopez-Munoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009;15(14):1563-86. 4. Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res. 2018;341:79-90. 5. Fava M, Davidson KG. Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am. 1996;19(2):179-200. 6. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 2010;7(4):231-5. 7. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9(3):471-81. 8. Heller AS. Cortical-Subcortical Interactions in Depression: From Animal Models to Human Psychopathology. Front Syst Neurosci. 2016;10:20. 9. Afridi R, Suk K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci. 2021;15:691067. 10. Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, et al. Psychological Stress Activates the Inflammasome via Release of Adenosine Triphosphate and Stimulation of the Purinergic Type 2X7 Receptor. Biol Psychiatry. 2016;80(1):12-22. 11. Serhan CN, Ward PA, Gilroy DW. Fundamentals of inflammation. Cambridge ; New York: Cambridge University Press; 2010. xiv, 473 p. p. 12. Parham P, Janeway C. The immune system. Fourth edition. ed. New York, NY: Garland Science, Taylor & Francis Group; 2015. 1 volume (various pagings) p. 13. Hall JE. Guyton and Hall textbook of medical physiology. 13th edition. ed. Philadelphia, PA: Elsevier; 2016. xix, 1145 pages p. 14. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826-31. 15. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-87. 16. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol. 2020;15:493-518. 17. Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci. 2014;15(2):84-97. 18. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3). 19. Waisman A, Liblau RS, Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 2015;14(9):945-55. 20. Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017;17(1):49-59. 21. Cattaneo A, Macchi F, Plazzotta G, Veronica B, Bocchio-Chiavetto L, Riva MA, et al. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci. 2015;9:40. 22. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139 Suppl 2(Suppl 2):136-53. 23. Garay PA, McAllister AK. Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci. 2010;2:136. 24. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46-56. 25. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22-34. 26. Banks WA. The blood-brain barrier in psychoneuroimmunology. Immunol Allergy Clin North Am. 2009;29(2):223-8. 27. Siegel GJ. Basic neurochemistry : molecular, cellular, and medical aspects. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 1999. xxi, 1183 p. 28. Benarroch EE. Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology. 2011;77(12):1198-204. 29. Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C. Cytokine signals propagate through the brain. Mol Psychiatry. 2000;5(6):604-15. 30. Konsman JP, Vigues S, Mackerlova L, Bristow A, Blomqvist A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol. 2004;472(1):113-29. 31. Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci. 2014;8:315. 32. Jeon SW, Kim YK. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness? World J Psychiatry. 2016;6(3):283-93. 33. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A. 1998;95(13):7778-83. 34. Liu M, Li J, Dai P, Zhao F, Zheng G, Jing J, et al. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress. 2015;18(1):96-106. 35. Ahn KS, Aggarwal BB. Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci. 2005;1056:218-33. 36. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. 37. Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004;5(5):392-401. 38. Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci. 2015;8:77. 39. Giuliani C, Bucci I, Napolitano G. The Role of the Transcription Factor Nuclear Factor-kappa B in Thyroid Autoimmunity and Cancer. Front Endocrinol (Lausanne). 2018;9:471. 40. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693-733. 41. Akira S, Takeda K. Functions of toll-like receptors: lessons from KO mice. C R Biol. 2004;327(6):581-9. 42. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138-45. 43. Yakovleva T, Bazov I, Watanabe H, Hauser KF, Bakalkin G. Transcriptional control of maladaptive and protective responses in alcoholics: a role of the NF-kappaB system. Brain Behav Immun. 2011;25 Suppl 1:S29-38. 44. Mattson MP. NF-kappaB in the survival and plasticity of neurons. Neurochem Res. 2005;30(6-7):883-93. 45. Sarnico I, Lanzillotta A, Benarese M, Alghisi M, Baiguera C, Battistin L, et al. NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol. 2009;85:351-62. 46. Kaltschmidt B, Kaltschmidt C. NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol. 2009;1(3):a001271. 47. Bakalkin G, Yakovleva T, Terenius L. NF-kappa B-like factors in the murine brain. Developmentally-regulated and tissue-specific expression. Brain Res Mol Brain Res. 1993;20(1-2):137-46. 48. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons. Proc Natl Acad Sci U S A. 1995;92(21):9618-22. 49. Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci. 2003;6(10):1072-8. 50. O'Riordan KJ, Huang IC, Pizzi M, Spano P, Boroni F, Egli R, et al. Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors. J Neurosci. 2006;26(18):4870-9. 51. Schultz C, Konig HG, Del Turco D, Politi C, Eckert GP, Ghebremedhin E, et al. Coincident enrichment of phosphorylated IkappaBalpha, activated IKK, and phosphorylated p65 in the axon initial segment of neurons. Mol Cell Neurosci. 2006;33(1):68-80. 52. Ahn HJ, Hernandez CM, Levenson JM, Lubin FD, Liou HC, Sweatt JD. c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learn Mem. 2008;15(7):539-49. 53. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A. 2010;107(6):2669-74. 54. Gutierrez H, Davies AM. Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci. 2011;34(6):316-25. 55. Caviedes A, Lafourcade C, Soto C, Wyneken U. BDNF/NF-kappaB Signaling in the Neurobiology of Depression. Curr Pharm Des. 2017;23(21):3154-63. 56. Garate I, Garcia-Bueno B, Madrigal JL, Caso JR, Alou L, Gomez-Lus ML, et al. Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry. 2013;73(1):32-43. 57. Cui J, Yang K, Yu X, Wang JL, Li J, Zhang Y, et al. Chronic Fluoxetine Treatment Upregulates the Activity of the ERK1/2-NF-κB Signaling Pathway in the Hippocampus and Prefrontal Cortex of Rats Exposed to Forced-Swimming Stress. Med Princ Pract. 2016;25(6):539-47. 58. Su WJ, Zhang Y, Chen Y, Gong H, Lian YJ, Peng W, et al. NLRP3 gene knockout blocks NF-kappaB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res. 2017;322(Pt A):1-8. 59. Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-kappaB and TNF-alpha/TNFR1/NF-kappaB pathways. Br J Pharmacol. 2020;177(22):5224-45. 60. Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109(16):2573-89 e9. 61. Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P, et al. Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia. J Neurosci. 2006;26(50):12896-903. 62. Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, et al. NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem. 2009;108(2):475-85. 63. Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, et al. NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest. 2012;122(7):2601-12. 64. Pizzi M, Sarnico I, Lanzillotta A, Battistin L, Spano P. Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS J. 2009;276(1):27-35. 65. Kaya Z. Kortikal Yayılan Depresyonun Tetiklediği Nöroinflamasyonun Çözülmesi ve Bunun Migren Baş Ağrısı Patofizyolojisindeki Yeri. Ankara: Hacettepe Üniversitesi; 2019. 66. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2. 67. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752-8. 68. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314-8. 69. Mizuno T. Neuron–microglia interactions in neuroinflammation. Clinical and Experimental Neuroimmunology. 2015;6. 70. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. 2020;11:1024. 71. John GR, Lee SC, Brosnan CF. Cytokines: powerful regulators of glial cell activation. Neuroscientist. 2003;9(1):10-22. 72. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. 73. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016;64(2):300-16. 74. Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci. 2014;34(32):10511-27. 75. Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci. 2021;22(21). 76. Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA. Constitutive NF-kappa B activity in neurons. Mol Cell Biol. 1994;14(6):3981-92. 77. Lilienbaum A, Israël A. From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol. 2003;23(8):2680-98. 78. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev. 1993;43(2-3):135-47. 79. Ikeda H, Tsuda M, Inoue K, Murase K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur J Neurosci. 2007;25(5):1297-306. 80. Chu YX, Zhang Y, Zhang YQ, Zhao ZQ. Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun. 2010;24(7):1176-89. 81. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013;39(1):19-34. 82. Lipozencic M. [CHRONIC INFLAMMATIONS OF THE PARANASAL SINUSES AND MENTAL DISTURBANCES. (PRELIMINARY REPORT)]. Pract Otorhinolaryngol (Basel). 1964;26:334-44. 83. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71(2):171-86. 84. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446-57. 85. O'Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res. 2007;41(3-4):326-31. 86. Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol. 2002;5(4):401-12. 87. Cai W, Khaoustov VI, Xie Q, Pan T, Le W, Yoffe B. Interferon-alpha-induced modulation of glucocorticoid and serotonin receptors as a mechanism of depression. J Hepatol. 2005;42(6):880-7. 88. Müller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680-4. 89. Du RH, Tan J, Sun XY, Lu M, Ding JH, Hu G. Fluoxetine Inhibits NLRP3 Inflammasome Activation: Implication in Depression. Int J Neuropsychopharmacol. 2016;19(9). 90. Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun. 2013;31:105-14. 91. Haapakoski R, Ebmeier KP, Alenius H, Kivimaki M. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:63-72. 92. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, et al. Neuroinflammation and depression: A review. Eur J Neurosci. 2021;53(1):151-71. 93. Park SE, Lawson M, Dantzer R, Kelley KW, McCusker RH. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. J Neuroinflammation. 2011;8:179. 94. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38(9):1609-16. 95. Huang X, Fei GQ, Liu WJ, Ding J, Wang Y, Wang H, et al. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-kappaB signaling pathways. Acta Pharmacol Sin. 2020;41(5):612-9. 96. Li Y, Song W, Tong Y, Zhang X, Zhao J, Gao X, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-kappaB axis. J Neuroinflammation. 2021;18(1):1. 97. Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20(1):32-47. 98. Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41:90-100. 99. Li MX, Zheng HL, Luo Y, He JG, Wang W, Han J, et al. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry. 2018;23(3):556-68. 100. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. 2016;21(10):1358-65. 101. Velasquez S, Rappaport J. Inflammasome Activation in Major Depressive Disorder: A Pivotal Linkage Between Psychological Stress, Purinergic Signaling, and the Kynurenine Pathway. Biol Psychiatry. 2016;80(1):4-5. 102. Liu YN, Peng YL, Liu L, Wu TY, Zhang Y, Lian YJ, et al. TNFα mediates stress-induced depression by upregulating indoleamine 2,3-dioxygenase in a mouse model of unpredictable chronic mild stress. Eur Cytokine Netw. 2015;26(1):15-25. 103. Alcocer-Gomez E, Ulecia-Moron C, Marin-Aguilar F, Rybkina T, Casas-Barquero N, Ruiz-Cabello J, et al. Stress-Induced Depressive Behaviors Require a Functional NLRP3 Inflammasome. Mol Neurobiol. 2016;53(7):4874-82. 104. Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, et al. Optogenetic regulation of endogenous proteins. Nat Commun. 2020;11(1):605. 105. Mahmoudi P, Veladi H, Pakdel FG. Optogenetics, Tools and Applications in Neurobiology. J Med Signals Sens. 2017;7(2):71-9. 106. Rost BR, Schneider-Warme F, Schmitz D, Hegemann P. Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron. 2017;96(3):572-603. 107. Lonser RR, Akhter AS, Zabek M, Elder JB, Bankiewicz KS. Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders. J Neurosurg. 2020;134(6):1751-63. 108. Merienne N, Le Douce J, Faivre E, Deglon N, Bonvento G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front Cell Neurosci. 2013;7:106. 109. Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One. 2013;8(9):e76310. 110. Shirai F, Hayashi-Takagi A. Optogenetics: Applications in psychiatric research. Psychiatry Clin Neurosci. 2017;71(6):363-72. 111. Hallett RA, Zimmerman SP, Yumerefendi H, Bear JE, Kuhlman B. Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide. ACS Synth Biol. 2016;5(1):53-64. 112. Che DL, Duan L, Zhang K, Cui B. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells. ACS Synth Biol. 2015;4(10):1124-35. 113. Pathak GP, Strickland D, Vrana JD, Tucker CL. Benchmarking of optical dimerizer systems. ACS Synth Biol. 2014;3(11):832-8. 114. Pathak GP, Spiltoir JI, Höglund C, Polstein LR, Heine-Koskinen S, Gersbach CA, et al. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 2017;45(20):e167. 115. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods. 2010;7(12):973-5. 116. Sato K, Watanabe R, Hanaoka H, Nakajima T, Choyke PL, Kobayashi H. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy. Oncotarget. 2016;7(12):14324-35. 117. Muhlhauser WW, Horner M, Weber W, Radziwill G. Light-Regulated Protein Kinases Based on the CRY2-CIB1 System. Methods Mol Biol. 2017;1596:257-70. 118. Ha SC, Kim D, Hwang HY, Rich A, Kim YG, Kim KK. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc Natl Acad Sci U S A. 2008;105(52):20671-6. 119. Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A. 2008;105(14):5477-82. 120. Furr SR, Marriott I. Viral CNS infections: role of glial pattern recognition receptors in neuroinflammation. Front Microbiol. 2012;3:201. 121. Kaiser WJ, Upton JW, Mocarski ES. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol. 2008;181(9):6427-34. 122. Rebsamen M, Heinz LX, Meylan E, Michallet MC, Schroder K, Hofmann K, et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 2009;10(8):916-22. 123. Hayashi T, Nishitsuji H, Takamori A, Hasegawa A, Masuda T, Kannagi M. DNA-dependent activator of IFN-regulatory factors enhances the transcription of HIV-1 through NF-κB. Microbes Infect. 2010;12(12-13):937-47. 124. Moser BA, Esser-Kahn AP. A Photoactivatable Innate Immune Receptor for Optogenetic Inflammation. ACS Chem Biol. 2017;12(2):347-50. 125. Tsuda M, Imaoka T. Chapter 14 - Direct injection of plasmid DNA into the brain. In: Latchman DS, editor. Genetic Manipulation of the Nervous System. London: Academic Press; 1995. p. 235-48. 126. Shi L, Tang GP, Gao SJ, Ma YX, Liu BH, Li Y, et al. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther. 2003;10(14):1179-88. 127. Paxinos G, Watson C. Paxino's and Watson's The rat brain in stereotaxic coordinates. Seventh edition. ed. Amsterdam ; Boston: Elsevier/AP, Academic Press is an imprint of Elsevier; 2014. 1 volume (unpaged) p. 128. Batassa EM, Costanzi M, Saraulli D, Scardigli R, Barbato C, Cogoni C, et al. RISC activity in hippocampus is essential for contextual memory. Neurosci Lett. 2010;471(3):185-8. 129. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22(12):1567-72. 130. SP5X USER INTERFACE: Λ2-MAPPING GUIDELINE: Leice Microsystems; [Available from: https://downloads.leica-microsystems.com/Leica%20TCS%20SP5%20X/User%20Manuals/SP5X_lambda_lambda_guideline.pdf. 131. Borlinghaus R. The white confocal. The European Physical Journal Plus. 2012;127. 132. Lambert TJ. FPbase: a community-editable fluorescent protein database. Nat Methods. 2019;16(4):277-8. 133. Confocal Application Notes, Lambda Scan: Leica Microsystems; 2006 [4:[Available from: https://btiscience.org/wp-content/uploads/2014/04/app_note_Lambda_Scan_SP5.pdf. 134. Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol. 2019;10:724. 135. Hökelekli F, Yılmaz M, Basar K, Ayhan Y, Dalkara T, Eren Koçak E. Role of a Natural Antisense Transcript, FGF2-AS, in Affective Behavior. Biological Psychiatry. 2017;81:S57-S8. 136. Uzay B, Hokelekli F, Yilmaz M, Esen E, Basar K, Bahadır Varol A, et al. NUDT6, the Antisense Protein of FGF2 Gene, Plays a Depressogenic Role by Promoting Inflammation and Suppressing Neurogenesis without Altering FGF2 Signaling2022. 137. Zhang M, Lin X, Zhang J, Su L, Ma M, Ea VL, et al. Blue light-triggered optogenetic system for treating uveal melanoma. Oncogene. 2020;39(10):2118-24. 138. Benedetti L, Barentine AES, Messa M, Wheeler H, Bewersdorf J, De Camilli P. Light-activated protein interaction with high spatial subcellular confinement. Proc Natl Acad Sci U S A. 2018;115(10):E2238-E45. 139. Yamada M, Suzuki Y, Nagasaki SC, Okuno H, Imayoshi I. Light Control of the Tet Gene Expression System in Mammalian Cells. Cell Rep. 2018;25(2):487-500.e6.
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV