Show simple item record

dc.contributor.advisorUğurlu, Ayşenur
dc.contributor.authorGüner, Ali
dc.date.accessioned2018-07-05T11:18:50Z
dc.date.available2018-07-05T11:18:50Z
dc.date.issued2018
dc.date.submitted2018-06-11
dc.identifier.citation[1]Lobo, C., Mullings, G. M., Recycled water in ready mixed concrete operations, Concrete InFOCUS, 2 (1), 17-26, 2003. [2] Agudelo-Vera, C. M., Leduc, W.R W.A., Mels, A. R., Rijnaarts, H. H.M., Harvesting urban resources towards more resilient cities., Resources. Conservation Recycling, 64, 3-12, 2012. [3]Tsimas, S., Zervaki, M., Reuse of waste water from ready-mixed concrete plants, Managment of Environmental Quality: An International Journal, 22 (1), 7-17, 2011. [4] Oikonomou, N. D., Recycled concrete aggregates, Cement & Concrete Composites, 27, 315-318, 2005. [5] TSE, TS-1247, Ankara, 1984. [6] Demiryürek, B. E., Türkiye' de Hazır Beton Sektörü ve Sektördeki Büyüme, İstanbul: İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2007. [7]Karakule, F., Akakın, T., Hazır beton sektörünün gelişimi ve özel beton uygulamalarında Türkiye'deki durum, 6. ulusal beton kongresi, İstanbul, 2005. [8] Türkiye Çimento Müstahsilleri Birliği, Çimento Nasıl Üretilir?, http://www.tcma.org.tr/index.php?page=icerikgoster&menuID=54.(Mart 2018). [9] Çevre ve Şehircilik Bakanlığı, Atık Yönetimi Yönetmeliği, Resmi Gazete Sayı:29314, 2015. [10]Kazaz, A., Ulubey, S., Er, B., Arslan, V., Arslan, A., Atıcı, M., Fresh ready-mixed concrete waste in construction projects: a planning approach, Procedia Engineering, 123, 268-275, 2015. [11] Iizuka, A., Sakai, Y., Yamasaki, A., Honma, M., Hayakawa, Y., Yanagisawa, Y., Masoto, H., Bench-Scale Operation of a Concrete Sludge Recycling Plant, Industrial & Engineering Chemistry Research, 51 (17), 6099-6104, 2012. [12] Xuan, D., Poon, C. S., Zheng, W., Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review, Resources, Conservation & Recycling, 136, 238-247, 2018. [13] Türkiye Hazır Beton Birliği, Türkiye Hazır Beton Birliği, www.thbb.org. (Nisan 2018). [14] Gürsel, A. P., Masanet, E., Horvath, A., Stadel, A., Life-cycle inventory analysis of concrete production: A critical review, Cement&Concrete Composites, 51, 38-48, 2014. [15] Parker, C. L., Slimak, M. W., Waste treatment and disposalcosts for ready-mixed concrete industry, American Concrete Institue Journal Proceedings, 74 (7), 281-287, 1977. [16] Asadollahfardi, G., Asadi, M., Jafari, H., Moradi, A., Asadollahfardi, R., Experimental and statistical studies of using wash water from ready-mix concrete trucks and batching plant in the production of fresh concrete, Construction and Building Materials, 98, 305-314, 2015. [17] Rakshvir, M., Barai, S. V., Studies on Recycled Aggregates-based Concrete, Waste Management & Research, 24 (3), 225-233, 2006. [18] Paula, H. M., Andrade, L. S., Ilha, M. S. O., Concrete plant wastewater treatment process by coagulation combining aluminum sulfate and Morigana oleifera powder, Journal of Cleaner Production 76, 76, 125-130, 2014. [19] Belen, G. F., Fernando, M. A., Diego, C. L., Sindy, S. P., Stress–strain relationship in axial compression for concrete using recycled saturated coarse aggregate, Construction and Building Materials, 25 (5), 2335-2342, 2011. [20] Chatveera, B., Lertwattanaruk, P., Makul, N., Effect of sludge water from ready-mixed concrete plant on properties and durability of concrete, Cement & Concrete Composites Elsevier, 28 (5), 441-450, 2006. [21] Ekolu, S. O., Dawneerangen, A., Evaluation of recycled water recovered from a ready mixed concrete plant for reuse in concrete, Journal of South African Institution of Civil Engineering 52, 24 (2), 77-82, 2010. [22]Debieb, F., Courard, L., Kenai, S., Degeimbre, R., Mechanical and Durability Properties of Concrete Using Contaminated Recycled Aggregates, Cement & Concrete Composites, 32, (6), 421-426, 2010. [23]Grdic, Z. J., Toplicic-Curcic, G. A., Despotovic, I. M., Ristic, N. S., Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregate, Construction and Building Materials, 24 (7), 1129-1133, 2010. [24]Limbachiya, M. C., Leelawat, T., Dhir, R. K., Use of Recycled Concrete Aggregate in High-Strength Concrete, Materials and Structures, 33 (9), 574-580, 2000. [25]Köken, A., Köroğlu, M. A., Yonar, F., Atık Betonların Beton Agregası Olarak Kullanılabilirliği, Selçuk-Teknik Dergisi, 7 (1), 86-97, 2008. [26]Building Contractors Society of Japan, Study on Recycled Aggregate and Recycled Concrete Aggregate, Concrete Journal, 16 (7), 18-31, 1978. [27]Coquillat, G., Recyclage des Materiaux de Demolition dans la Confection du Beton, CEEBTP-service D’etude des Materiaux Unite: Technologie des Beton, 80-61-248, 1982. [28]Coşkun, İ., Tandırıcı, E., Kurt, S., Geri Dönüşüm Suyu İkamesinin Beton Üretimine Etkileri, Beton İstanbul, İstanbul, 2017. [29]Durmuş, G., Şimşek, O., Dayı, M., Geri Dönüşümlü İri Agregaların Beton Özelliklerine Etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 24 (1), 183-189, 2009. [30] TSE, TS EN 933-1, Türk Standartları Enstitüsü, ANKARA, 1999. [31] TSE, TS EN 1097-6, Türk Standartları Enstitüsü, Ankara, 2002. [32] TSE, TS EN 1097-2, Türk Standartları Enstitüsü, ANKARA, 2000. [33] TSE, TS EN 12350-6, Türk Standartları Enstitüsü, ANKARA, 2002. [34] TSE, TS EN 12350-2, Türk Standartları Enstitüsü, Ankara, 2002. [35] TSE, TS EN 12390-1, Türk Standartları Enstitüsü, Ankara, 2002. [36] TSE, TS EN 12390-2, Türk Standartları Enstitüsü, Ankara, 2002. [37] TSE, TS EN 12390-3, Türk Standartları Enstitüsü, Ankara, 2003. [38] İstanbüllüoğlu, S., Betonun Basınç Dayanımını Etkileyen Faktörler ve Ramble Betonunun Seçimi ile İlgili Bir Çalışma, Madencilik, 17 (3), 20-31, Eylül 1988. [39] Rao, A., Jha, K. N., Misra, S., Use of aggregates from recycled construction and demolition waste in concrete, Resources Conservation & Recycling, 50 (1), 71-81, 2007. [40] Demirel, C., Şimşek, O., C30 Sınıfı Atık Betonun Geri Dönüşüm Agregası Olarak Beton Üretiminde Kullanılabilirliği, Selçuk Üniversitesi Mühendislik Bilim ve Teknik Dergisi, 2 (2), 45-54, 2014. [41] TSE, TS EN 1008, Türk Standartları Enstitüsü, Ankara, 2003. [42] TSE, Beton- Bölüm 1: Özellik, performans, imalat ve uygunluk, Ankara, 2014. [43] TSE, TS 3530 EN 933-1, Türk Standartları Enstitüsü, ANKARA, 1999. [44] TSE, TS EN 1097-1, Türk Standartları Enstitüsü, ANKARA, 2002.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/4605
dc.description.abstractIn this study, possibility of reuse of aggregate and recycled water as sludge and wastewater collected from ready-mixed concrete plants and unused concrete and sedimentation pools were investigated. It is demanded that the ready-mixed concrete industry show similar results and consistency in the quality tests made on the same class concrete, fresh concrete and hardened concrete produced at different times. For this reason, in order to be able to use the recycling aggregate continuously in the production of concrete and to obtain the same quality results in the concrete tests, the recycling aggregate obtained by washing and sifting the waste concrete and concrete slurry in the work carried out, the concentration of water collected in the sedimentation pool was diluted with mains water and fixed to 1.04 g/cm3 and reused in production. Concrete samples belonging to C25/30 and C30/37 compressive strength classes were prepared in two different cities using natural aggregate-recycling aggregate mixture and tests were made on concrete samples within the framework of standards determined by Turkish Standards Institute. In the study, it is found that the natural aggregate water absorption ratios are in the range of 0.21-2.50% while the recycling aggregate water absorption ratios have high rates in the range of 5-10%, and the specific gravity of recycle aggregates is 15% lower than the natural aggregates. In the abrasion resistance tests of the recycled coarse aggregates, the Los Angeles coefficient ratios were found to be 30% higher than the natural aggregates and the recycling aggregates' resistance to abrasion was lower. In fresh concrete tests, it is determined that the unit weight of concrete samples produced by recycling aggregate are lower by 0.65-0.70 kg/dm3 than the witness concrete samples, and the slump values are 7-16% lower than the witness concrete sample. In compressive strength tests made on hardened concrete specimens; in the case of C25/30 class concrete produced in the 1st plant, the 28 day compressive strength value was 30.2 MPa and the 30 MPa limit value was provided. In the C30/37 class concrete, the 28 day compressive strength value was measured as 37 MPa and it was found to provide 37 MPa limit value. It is determined that results of compressive strength tests of concrete specimens produced in the facility 2 are close to the limit values but did not provide the limit values. It has been determined that all of the wastewater generated in the concrete plants can be used continuously in the production process after being subjected to the washing and screening processes of the recycling aggregate.tr_TR
dc.description.tableofcontentsİÇİNDEKİLER Sayfa ÖZET i ABSTRACT iii TEŞEKKÜR v ÇİZELGELER vii ŞEKİLLER viii KISALTMALAR x 1. GİRİŞ 1 1.1 Çalışmanın Anlam ve Önemi 1 1.2 Çalışmanın Amaç ve Kapsamı 2 2. GENEL BİLGİLER 3 2.1 Hazır Beton Sektörü Tarihi ve Uygulamaları 3 2.1.1 Hazır Beton Üretimi 4 2.2 Hazır Beton Santrallerinin Çevresel Etkileri 7 2.2.1 Hazır Beton Santrallerinde (H.B.T.) Atık Su Ve Beton Çamurunun Tekrar Kullanımı 12 2.2.2 Mevcut Durumda H.B.T.’lerde Beton Çamuru ve Atık Suyun Tekrar Kullanımı 16 2.3 Literatür Taraması 21 3. MATERYAL ve YÖNTEMLER 25 3.1 Atık Çamurun ve Atıksuyun yeniden Kullanılması 25 3.2 Analiz Metodları 30 3.2.1 Agrega Deneyleri 30 3.2.1.1 Elek Analizi Deneyi 30 3.2.1.2 Özgül Kütle ve Su Emme Deneyleri 31 3.2.1.3 Los Angeles (Aşınma Dayanımı) Deneyi 33 3.2.2 Taze Beton Deneyleri 33 3.2.2.1 Taze Beton Yoğunluk Deneyi 34 3.2.2.2 Çökme (Slump) Değerinin Belirlenmesi 34 3.2.3 Sertleşmiş Beton Basınç Dayanım Deneyi 35 4. ARAŞTIRMA BULGULARI 37 4.1 Agrega Deneyleri 37 4.1.1 Elek Analizi Sonuçları 37 4.1.2 Özgül Kütle ve Su Emme Sonuçları 41 4.1.3 Los Angeles (Aşınma Dayanımı) Deneyi Sonucu 43 4.2 Geri Dönüşüm Suyu Özellikleri 44 4.3 Üretilen Betonun Özelliklerinin Belirlenmesi 45 4.3.1 Taze Beton Yoğunluk ve Çökme Deneyi Sonuçları 46 4.3.2 Basınç Dayanım Deneyi Sonuçları 47 5. SONUÇLARIN TARTIŞILMASI 50 5.1 Geri Dönüşüm Agregası ve Geri Dönüşüm Suyuna Yönelik Değerlendirme 50 5.2 Beton Kalitesine Yönelik Değerlendirme 51 5.3 Geri Kazanım Sistemine Yönelik Değerlendirme 51 5.4 Çevresel Kazanımlar 52 5.5 Sonuçlar 55 5.6 Gelecek Çalışmalar İçin Öneri 57 KAYNAKÇA 60 ÖZGEÇMİŞ 63tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectAtık Betonlartr_TR
dc.subjectBeton Yıkamatr_TR
dc.subjectEski Beton Kırıklarıtr_TR
dc.subjectGeri Dönüştürülmüş Agregalartr_TR
dc.subjectGeri Dönüştürülmüş Betonlartr_TR
dc.subjectGeri Dönüşüm Suyutr_TR
dc.titleHazır Beton Santrallerinde Oluşan Çamur ve Atıksuyun Tekrar Kullanımıtr_TR
dc.title.alternativeReuse of Wastewater and Sludge from Ready Mixed Concrete Plantstr_TR
dc.typemasterThesistr_TR
dc.description.ozetBu çalışmada, hazır beton santrallerinde üretim fazlası ortaya çıkan ve kullanılamayan betonlar ile çökelme havuzlarında toplanan çamur ve atıksuyun atık durumundan çıkartılarak agrega ve geri dönüşüm suyu olarak tekrar kullanılma olanakları araştırılmıştır. Hazır beton sektöründe, farklı zamanlarda üretilen aynı sınıf betonun, taze beton ve sertleşmiş beton üzerinde yapılan kalite testlerinde benzer sonuçlar göstermesi ve süreklilik arz etmesi istenmektedir. Bu sebeple geri dönüşüm agregasının beton üretiminde sürekli olarak kullanılabilmesi ve beton testlerinde aynı kalite sonuçlarının elde edilebilmesi için, yapılan çalışmada atık beton ve beton çamurunun yıkama ve eleme işlemlerine tabii tutulması ile elde edilen geri dönüşüm agregasından %30 oranında, çökelme havuzunda toplanan su yoğunluğu şebeke suyu ile seyreltilerek 1,04 g/cm3 değerine sabitlenerek üretimde tekrar kullanılmıştır. Doğal agrega-geri dönüşüm agregası karışımı kullanılarak C25/30 ve C30/37 basınç dayanım sınıflarına ait beton numuneleri farklı şehirlerde yer alan iki tesiste hazırlanmış olup beton numuneleri üzerinde Türk Standartları Enstitüsü’nün belirlediği standartlar çerçevesinde testler yapılmıştır. Çalışmda, doğal agrega su emme oranları %0,21-2,50 aralığında iken geri dönüşüm agregası su emme oranı %5-10 aralığında yüksek oranlara sahip olduğu, geri dönüşüm agregaları özkütlesinin doğal agregalara oranla %15 daha düşük olduğu, geri dönüşüm iri agregalarının aşınma dayanım testlerinde Los Angeles katsayısı oranları doğal agregalara göre %30 daha fazla ve geri dönüşüm agregalarının aşınmaya karşı dirençlerinin daha düşük olduğu tespit edilmiştir. Taze beton testlerinde, geri dönüşüm agregası kullanılarak üretilen beton numuneleri birim kütleleri şahit beton numunelerine göre 0,65-0,70 kg/dm3 daha düşük olduğu çökme değerlerinin ise şahit beton numunesine oranla %7-16 düşük olduğu tespit edilmiştir. Sertleşmiş beton numuneleri üzerinde yapılan basınç dayanım testlerinde; Tesis 1’de üretilen C25/30 sınıfı betonda 28 günlük basınç dayanım değeri 30,2 MPa olup 30 MPa sınır değeri sağladığı, C30/37 sınıf betonda ise 28 günlük basınç dayanım değeri 37 MPa olarak ölçülmüş ve 37 MPa sınır değeri sağladığı tespit edilmiştir. Tesis 2’de üretilen beton numunelerinin basınç dayanım testleri sonuçlarının sınır değerlere yakın olduğu ancak sağlamadığı belirlenmiştir. Çalışma kapsamında beton santrallerinde oluşan atıksuyun tamamının sürekli olarak üretimde kullanımının mümkün olduğu, geri dönüşüm agregasının yıkama ve eleme işlemlerine tabi tutulduktan sonra kullanılabileceği tespit edilmiştir.tr_TR
dc.contributor.departmentÇevre Mühendisliğitr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record