• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Endüstri Mühendisliği Bölümü
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Endüstri Mühendisliği Bölümü
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kariyer Planlama İçin Karar Destek Sistemi

View/Open
Tez-MAkgun-10102019.pdf (2.243Mb)
Date
2019
Author
Akgün, Muhammet
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
In the last years, the increasing number of artificial intelligence applications have been continuously invading our daily lives. This thesis, as a result of the introduction of machine learning approaches to the career planning domain, has been undertaken in order to develop a recommender system that counsels and proposes a work industry to university graduates. A system based on machine learning algorithms that recommends to new graduates an industry to work at, based on the education history, grades and personal information of previous graduates is designed in this study. The Cross Industry Standard Process for Data Mining (CRISP-DM), which is one of the most common data mining processes, is employed after reviewing the characteristics of the problem at hand. The six steps of CRISP-DM, namely understanding the business, understanding the data, preparing the data, modelling, evaluation and setting out, have guided the research methodology. In the modeling phase KNN, Random Forest, Naive Bayes, Support Vector Machines and Decision Tree machine learning algorithms have been utilized. In order to answer the research questions set by this thesis, a case study based on the data collected by Hacettepe University Department of Industrial Engineering and Hacettepe University Student Affairs Office (ÖİDB) has been designed and executed. At the end of the research, the accuracy of supervised machine learning algorithms has been examined with the use of a confusion matrix, and the best compared result has been obtained from Random Forest (with a 67,46% accuracy).
URI
http://hdl.handle.net/11655/9361
xmlui.mirage2.itemSummaryView.Collections
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu [39]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV