• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Almost P-Ary Perfect Sequences And Their Applications To Cryptography

View/Open
10273343.pdf (1.563Mb)
Date
2019
Author
Özden, Büşra
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
In this thesis we study almost p-ary sequences and their autocorrelation coefficients. We first study the number L of distinct out-of-phase autocorrelation coefficients for an almost p-ary sequence of period n + s with s consecutive zero-symbols. We prove an upper bound and a lower bound on L. It is shown that L can not be less than min{s, p, n}. In particular, it is shown that a nearly perfect sequence with at least two consecutive zero symbols does not exist. Next we define a new difference set, partial direct product difference set (PDPDS), and we prove the connection between an almost p-ary nearly perfect sequence of type (γ1, γ2) and period n + 2 with two consecutive zero-symbols and a cyclic (n + 2, p, n, (n−γ2−2)/p + γ2, 0, (n−γ1−1)p + γ1,(n−γ2−2)/p,(n−γ1−1)/p) PDPDS for arbitrary integers γ1 and γ2. We show that the almost p-ary sequences of type (γ1, γ2) and period n + 2 with two consecutive zero-symbols are symmetric sequences except for zero entries. Then we prove a necessary condition on γ2 for the existence of such sequences. In particular, we show that they don’t exist for γ2 ≤ −3. Perfect sequences are very important for achieving non-linearity in a cryptosystem, and they are important in Code Division Multiple Access (CDMA) to ensure a proper communication. In this thesis, we show a method for obtaining cryptographic functions from almost p-ary nearly perfect sequences (NPS) of type (γ1, γ2). In fact, most of the cases we obtain functions with the highest non-linearity, i.e. generalized bent functions. We use almost p-ary NPS of type (γ1, γ2) in CDMA communication. We simulate the bit-error-rate (BER) performance of CDMA with these sequences.
URI
http://hdl.handle.net/11655/9429
xmlui.mirage2.itemSummaryView.Collections
  • Matematik Bölümü Tez Koleksiyonu [45]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsIndexing SourceFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV