

A DECISION ANALYSIS APPROACH FOR SELECTI NG

SOFTWARE DEFECT PREDICTION METHOD IN THE

EARLY PHASES

ERKEN AķAMALARDA YAZILIM HATA TAHMĶN

Y¥NTEMĶ SE¢ĶMĶ Ķ¢ĶN BĶR KARAR ANALĶZĶ

YAKLAķIMI

RANA ¥ZAKINCI

ASSOC. PROF. DR. AY¢A KOLUKISA TARHAN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Doctor of Philosophy

in Computer Engineering.

2022

i

ii

To my family

iii

iv

v

ABSTRACT

A DECISION ANALYSIS APPROACH FOR SELECTING SOFTWARE

DEFECT PREDICTION METHOD IN THE EARLY PHASES

Rana ¥ZAKINCI

Doctor of Philosophy, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Aya KOLUKISA TARHAN

June 2022, 216 pages

Considering that software usage rates have increased, it is inevitable for end-users to

prefer high-quality software products. Undoubtedly, one of the most important quality

indicators of a software product is its defect rate. With the widespread use of methods

and tools that support estimation tasks in software engineering, the interest in software

defect prediction is increasing. Currently, most defect prediction models are built using

the metrics from the coding phase. This situation leads to the inability to process the

information belonging to the early stages of the software development life cycle such as

requirements analysis or design, thus not being able to benefit from preventive actions

such as cost reduction and effective resource planning in the early stages. Eventually, it

becomes important for stakeholders to build the desired defect prediction model as early

as possible and to use it throughout the software development life cycle. When the

proliferation of methods of data science in software engineering is combined with the

shortage of knowledge to use them in industry, an important need arises to guide

vi

practitioners in selecting the best-fit methods by considering their specific needs. This

thesis presents research aimed at addressing the method selection problem in software

defect prediction during the early phases of the life cycle by using a formal decision

analysis process. A two-phase decision analysis approach was proposed that is structured

using a decision tree and multi-criteria decision analysis (MCDA) methodologies. In

doing so, an extensive literature review was conducted to obtain a general view of the

characteristics and usefulness of Early Software Defect Prediction (ESDP) models

reported in scientific literature. As a result, the most preferred prediction methods,

metrics, datasets, and performance evaluation methods, as well as the addressed SDLC

phases were highlighted. Accordingly, the alternatives to be evaluated in the decision

analysis and the criteria that may have an impact on the decision of method selection were

systematically determined. To strengthen the knowledge, two different expert opinion

surveys were conducted. Besides, to manage the operation of the decision analysis

process, a questionnaire is proposed to reveal stakeholder needs and dataset

characteristics. After, several case studies were performed to investigate the

trustworthiness of the proposed approach with selected SDP methods using public

datasets. The most convenient methods proposed by the decision analysis are Naµve

Bayes (NB), Decision Tree (DT), and Fuzzy Logic-based methods for the case studies. It

is concluded that the results of the decision analysis are consistent with both the results

of the empirical evidence of the experiments conducted in the thesis and the results

reported in the scientific literature. Overall, the presented approach could be useful in

helping software practitioners decide which SDP method is advantageous by revealing

their specific requirements for the software projects and associated defect data. While the

results of this thesis provide guidance for future research on the context of ESDP, further

studies on different software projects are necessary in order to expand knowledge prior

to having decisions that are more reliable.

Keywords: Defect Prediction, Early Phases, Early Software Defect Prediction, Method

Selection, Decision Analysis, Multi Criteria Decision Analysis, Fuzzy TOPSIS

vii

¥ZET

ERKEN AķAMALARDA YAZILIM HATA TAHMĶN Y¥NTEMĶ SE¢ĶMĶ Ķ¢ĶN

BĶR KARAR ANALĶZĶ YAKLAķIMI

Rana ¥ZAKINCI

Doktora, Bilgisayar M¿hendisliĵi Bºl¿m¿

Tez Danēĸmanē: Do. Dr. Aya KOLUKISA TARHAN

Haziran 2022, 216 sayfa

D¿nyada yazēlēm kullanēm oranlarēnēn g¿nden g¿ne arttēĵē gºz ºn¿ne alēndēĵēnda, son

kullanēcēlarēn kaliteli yazēlēm ¿r¿nlerini tercih etmek istemesi yadsēnamaz bir gerektir.

Bir yazēlēm ¿r¿n¿n¿n en ºnemli kalite gºstergelerinden biri de hata oranēdēr. Yazēlēm

m¿hendisliĵinde tahmin gºrevlerini destekleyen yºntem ve aralarēn yaygēnlaĸmasēyla

birlikte yazēlēm hata tahminine olan ilginin arttēĵē bilinmektedir. G¿ncel durumda, oĵu

hata tahmin modeli, kodlama aĸamasēndan elde edilen metrikler kullanēlarak

oluĸturulmaktadēr. Bu durum, yazēlēm geliĸtirme yaĸam dºng¿s¿n¿n gereksinim analizi

veya tasarēmē gibi erken aĸamalarēna ait bilgilerin iĸlenememesine, dolayēsēyla erken

aĸamalarda maliyet d¿ĸ¿rme ve etkin kaynak planlamasē gibi ºnleyici faaliyetlerden

yararlanēlamamasēna yol amaktadēr. Paydaĸlar iin, hata tahmin modelini m¿mk¿n

olduĵunca erken oluĸturmalarē ve yazēlēm geliĸtirme yaĸam dºng¿s¿ boyunca

kullanmalarē ºnemli hale gelir. Yazēlēm m¿hendisliĵinde veri bilimi yºntemlerinin

oĵalmasē, fakat bunlarē sektºrde kullanmak iin bilgi ve uzmanlēĵēn yeterli olmadēĵē gºz

ºn¿nde bulundurulduĵunda, paydaĸlarēn proje ºzelindeki ihtiyalarēnē gºz ºn¿nde

bulundurarak en uygun hata tahmin yºntemini seme konusunda rehberlik etmek iin bir

ihtiyacēn ortaya ēktēĵē gºr¿lm¿ĸt¿r. Bu tez, bir karar analizi s¿reci kullanarak yaĸam

dºng¿s¿n¿n ilk aĸamalarēnda yazēlēm hata tahmininde yºntem seimi problemini ele

viii

almayē amalayan bir araĸtērma sunmaktadēr. Bu doĵrultuda, karar aĵacē ve ok kriterli

karar analizi (Ķng. MCDA) metodolojileri kullanēlarak yapēlandērēlmēĸ iki aĸamalē bir

karar analizi yaklaĸēmē ºnerilmiĸtir. ¥ncelikli olarak, literat¿rde bildirilen Erken Aĸama

Yazēlēm Hata Tahmini (Ķng. ESDP) modellerinin ºzellikleri ve kullanēĸlēlēĵē hakkēnda

genel bir gºr¿ĸ elde etmek iin kapsamlē bir literat¿r taramasē yapēlmēĸtēr. Bu alēĸma ile

literat¿rde erken aĸamada hata tahmini konusunda en ok tercih edilen tahmin yºntemleri,

metrikler, veri setleri ve performans deĵerlendirme kriterleri analiz edilmiĸtir. Buna gºre

karar analizinde deĵerlendirilecek alternatifler ve yºntem seimi kararēna etki edebilecek

kriterler sistematik olarak belirlenmiĸtir. Literat¿rde elde edilen bilgileri g¿lendirmek

iin iki farklē uzman gºr¿ĸ¿ anketi yapēlmēĸtēr. Ayrēca, karar analizi s¿recinin iĸleyiĸini

yºnetmek iin paydaĸ ihtiyalarēnē ve veri seti ºzelliklerini ortaya ēkarmaya yarayan bir

anket ºnerilmiĸtir. Daha sonra, karar analizi yaklaĸēmē tarafēndan ºnerilen tahmin

yºntemlerinin doĵruluĵunu ve g¿venilirliĵini araĸtērmak iin eriĸime aēk veri k¿meleri

¿zerinde birka vaka alēĸmasē yapēlmēĸtēr. Karar analizi yaklaĸēmē tarafēndan ºnerilen en

uygun yºntemler, ¿ farklē durum alēĸmasē iin sērasēyla Naive Bayes, Karar Aĵacē ve

Bulanēk Mantēk tabanlē yºntemlerdir. Karar analizi sonularēnēn hem tezde yapēlan

deneylerin ampirik kanētlarēnēn sonularēyla hem de bilimsel literat¿rde raporlanmēĸ

sonularla tutarlē olduĵu gºzlenmiĸtir. Genel olarak, sunulan karar analizi yaklaĸēmēnēn,

yazēlēm projeleri ve ilgili hata verileri iin ºzel gereksinimleri ortaya ēkararak, yazēlēm

uygulayēcēlarēna hangi hata tahmin yºnteminin avantajlē olacaĵēna dair ipucu vermesi

aēsēndan faydalē olacaĵē gºr¿lm¿ĸt¿r. Bu tezin sonularē, erken aĸamalarda yazēlēm hata

tahmin kapsamēnda yapēlacak gelecek araĸtērmalar iin rehberlik saĵlarken, karar analizi

yaklaĸēmēn sonularēnēn doĵruluĵunu arttērmak adēna sektºrden yazēlēm projeleri

¿zerinde daha fazla alēĸma yapēlmasē gerektiĵi d¿ĸ¿n¿lmektedir.

Anahtar Kelimeler: Yazēlēm Hata Tahmini, Erken Aĸama, Yºntem Seimi, Karar

Analizi, ¢oklu Kriterli Karar Analizi, Bulanēk TOPSIS

ix

ACKNOWLEDGEMENTS

Looking back on my long journey, I would like to express my endless thanks to my

advisor, Assoc. Prof. Dr. Aya Kolukēsa Tarhan, who has always been by my side as a

great supporter. I want to thank her for her guidance, encouragement and feedback which

has helped me tremendously in pursuing my PhD study.

I would like to express my gratitude to Assoc. Prof. Dr. Oumout Chouseinoglou and

Assoc. Prof. Dr. Aysu Betin Can for their valuable feedback, contributions, and patience.

I am also grateful to Prof. Dr. Pēnar Karagºz and Assoc. Prof. Dr. Ebru Gºkalp for their

suggestions during my thesis defense presentation. I express my gratitude to the

anonymous experts from both the academia and the industry, who contributed to the

expert opinion studies and surveys.

I would like to thank TUBITAK BILGEM Software Technologies Research Institute

(YTE) for supporting my academic studies. I also thank my colleagues who contributed

to my work with their valuable suggestions and their participations when necessary. I am

grateful to my dear friends for their endless support and motivation.

I would like to express my sincere thanks and love to my parents and sister, who have

always supported me in my entire life and made the greatest contribution to my success.

I will be forever grateful to my dear husband, Mehmet, for helping me intellectually and

emotionally from day one. This work would not have been possible without his patience

and endless support. I have the deepest feelings for my lovely son, ¥zg¿n, who joined

our family in the last years of my doctoral studies and gave me endless happiness.

Finally, I appreciate myself for continuing my devoted work with patience and pleasure

during this long journey, seeing that I have taken a step towards knowing and

understanding myself, and not losing my faith.

x

TABLE OF CONTENTS

ABSTRACT .. v

¥ZET ... vii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS ... x

LIST OF FIGURES ... xiv

LIST OF TABLES ... xvi

ABBREVIATIONS ... xviii

1. INTRODUCTION .. 1

1.1. Software Defect Prediction (SDP) at Early Phases 3

1.2. Goal and Research Questions ... 5

1.3. Research Methods ... 7

1.3.1. Literature Review ... 7

1.3.2. Case Study .. 8

1.3.3. Data Analysis ... 8

1.3.4. Survey ... 8

1.4. Contributions .. 8

1.5. Overall Design of Thesis Study with Mappings to RQs and Chapters ... 10

1.6. Thesis Organization ... 10

2. BACKGROUND .. 12

2.1. What is ñDefectò? ... 12

2.2. Software Defect Prediction ... 12

2.2.1. Defect Prediction Approaches ... 13

2.2.2. Software Metrics .. 20

2.2.3. Public Datasets .. 22

2.2.4. Performance Evaluation Measures .. 26

2.2.5. SDP During Early Phases.. 31

2.3. Decision Analysis ... 32

2.3.1. Decision Tree .. 32

2.3.2. MCDA .. 33

xi

3. RELATED WORK ... 35

3.1. Secondary Studies on SDP .. 35

3.1.1. Systematic Literature Review Studies .. 35

3.1.2. Systematic Mapping Studies .. 36

3.1.3. Other Literature Reviews ... 37

3.2. Studies Focus on SDP Frameworks ... 37

3.3. SDP Studies Using MCDA .. 39

3.4. Defect Prediction in Early Phases ï State of the Art and Benefits of

ESDP .. 40

3.4.1. RQ 1: What are the characteristics of ESDP models? 43

3.4.2. RQ 2. Are models of ESDP successful and beneficial? 54

3.5. Software Defect Prediction in Turkey ï A Survey Study from Industry

(RQ3) .. 65

3.5.1. Survey Design .. 65

3.5.2. Results ... 67

4. DECISION ANALYSIS APPROACH.. 70

4.1. Design of Decision Analysis Approach ... 70

4.2. What are the alternative methods for building ESDP models? (RQ4.1) . 71

4.3. What are the criteria to consider when selecting a method for ESDP?

(RQ4.2) ... 72

4.3.1. Initially Defined Criteria .. 72

4.3.2. Expert Opinion Study on Identifying and Ranking the Criteria 75

4.3.3. Ranking and Weighting the Criteria.. 79

4.4. How should the most appropriate method be selected by evaluating the

defined criteria? (RQ4.3) .. 80

4.4.1. Expert Opinion Study for the Evaluation of Alternatives against

Criteria ... 81

4.4.2. Base Matrix .. 82

4.5. How should we gather the characteristics of the project data and the

needs of the users systematically? (RQ4.4) ... 84

4.6. Modeling the Decision Analysis Approach .. 86

4.6.1. Phase - 1: Decision Tree Analysis ... 86

4.6.2. Phase - 2: MCDA (Fuzzy TOPSIS) .. 86

xii

4.6.3. Decision Analysis Tool: MCDA for ESDP .. 90

5. CASE STUDY ... 92

5.1. Design of the Multiple Case Study ... 92

5.2. Research Questions... 93

5.3. Case Study 1 - Classification Based on Design Phase Data 94

5.3.1. Case Study Design .. 94

5.3.2. Decision Analysis (RQ5.1) ... 96

5.3.3. Experimental Study (RQ5.2) .. 98

5.3.4. Results Comparison (RQ5.3) ... 100

5.3.5. Observations ... 105

5.3.6. Investigating Evidence from Literature .. 107

5.4. Case Study 2 - Prediction Based on Product, Process and Resource . 110

5.4.1. Case Study Design .. 110

5.4.2. Decision Analysis (RQ5.1) ... 111

5.4.3. Experimental Study (RQ5.2) .. 113

5.4.4. Results Comparison (RQ5.3) ... 115

5.5. Case Study 3 - Lack of Data: Prediction Based on Expert Opinion 116

5.5.1. Case Study Design .. 116

5.5.2. Decision Analysis (RQ5.1) ... 117

5.5.3. Experimental Study (RQ5.2) .. 119

5.5.4. Results Comparison (RQ5.3) ... 125

5.5.5. Investigating Evidence from Literature .. 125

6. RECOMMENDATIONS .. 131

7. CONCLUSION .. 136

7.1. Summary of Thesis .. 136

7.2. Contributions .. 139

7.3. Threads to Validity ... 140

7.3.1. Internal Validity .. 140

7.3.2. Construct validity ... 142

7.3.3. Conclusion validity ... 143

7.3.4. External validity ... 144

7.4. Future Work ... 144

xiii

8. BIBLIOGRAPHY ... 146

APPENDIX .. 164

APPENDIX 1 ï Mapping references to ids of primary studies in [15] 164

APPENDIX 2 ï Results of ñSurvey Study on SDP from Industry in Turkeyò 168

APPENDIX 3 ï Results of ñExpert Opinion Study on Identifying and Ranking

the Criteriaò ... 181

APPENDIX 4 ï Results of ñExpert Opinion Study for the Evaluation of

Alternatives against Criteriaò ... 184

APPENDIX 5 ï Related Publications ï Journal Articles 189

APPENDIX 6 ï Related Publications ï Conference Papers 190

APPENDIX 7 ï Dissertation Originality Report .. 191

RESUME ... Error! Bookmark not defined.

xiv

LIST OF FIGURES

Figure 1.1. Relative Cost Ratio for Fixing Software Defects per Life Cycle Phase [3] ... 2

Figure 1.2. The design of the thesis with mapping to the RQs and chapters 10

Figure 2.1. Factors in Fenton Dataset [21] .. 26

Figure 2.2. The confusion matrix .. 27

Figure 2.3. Performance evaluation measures .. 28

Figure 2.4. ROC curve .. 29

Figure 3.1. Research protocol for systematic mapping and literature review 40

Figure 3.2. Distribution of dataset types ... 44

Figure 3.3. Cumulative number of dataset types per year ... 44

Figure 3.4. Individual distribution of SDLC phases ... 45

Figure 3.5. Cumulative distribution of the SDLC phases ... 46

Figure 3.6. Individual distribution of software entities ... 46

Figure 3.7. Cumulative distribution of software entities ... 47

Figure 3.8. Distribution of prediction methods ... 51

Figure 3.9. Categories of contextual parameters reported in 18 primary studies 53

Figure 3.10. Distribution of the prediction performance methods 55

Figure 3.11. Performance evaluation measures in categorical models 56

Figure 3.12. Performance evaluation measures in continuous models 56

Figure 3.13. Performance results (AUC) regarding phase in categorical studies 58

Figure 3.14. Performance results (f-measure, precision and recall) regarding phase in

categorical studies ... 59

Figure 3.15. Performance results (MMRE) regarding phase in continuous studies 60

Figure 3.16. Goodness-of-fit (R2) values reported in continuous studies 61

Figure 4.1. Design of the decision analysis approach ... 70

Figure 4.2. Responses of the experts (E) regarding the criteria 77

Figure 4.3. Decision tree for the phaseï1 of the decision analysis process 86

Figure 4.4. Linguistic variables and their corresponding fuzzy values 87

Figure 4.5. Decision matrix for DM1 .. 88

Figure 4.6. Fuzzy matrix for DM1 .. 89

Figure 4.7. Screenshot of Phase-1: Decision Tree Analysis for case study 1A 91

Figure 4.8. Screenshot of Phase-2: Fuzzy TOPSIS Application for case study 1A 91

xv

Figure 5.1. Multiple case study design ... 92

Figure 5.2. Decision tree analysis for case study 1 ... 97

Figure 5.3. AUC values of the classifiers with regard to dataset sizes 100

Figure 5.4. Average training time of the classifiers with regard to dataset size 100

Figure 5.5.a Cluster Analysis of DA-Performance (left), b. Cluster Analysis of Prediction

Performance (right) ... 101

Figure 5.6. Friedman test results for prediction performance (based on AUC) 102

Figure 5.7.a Cluster Analysis of DA-Speed (left), b. Cluster Analysis for Training Time

of the Classifiers (right) .. 104

Figure 5.8. Friedman test results for speed criterion (based on time to train) 104

Figure 5.9. AUC values of the classifiers regarding dataset size in the literature 109

Figure 5.10. Selected metrics from NASA-93 dataset .. 111

Figure 5.11. Decision tree analysis for case study 2 ... 112

Figure 5.12. Execution of the decision tree for case study 3 .. 118

Figure 5.13. The design of the proposed FIS based model ... 121

Figure 5.14. Membership function of the input variable óRFDô 122

Figure 5.15. Membership function of the output variable .. 122

Figure 5.16. A portion of the fuzzy rule set .. 123

Figure 5.17. The design of the proposed BBN based model .. 124

Figure 5.18. The structure of the proposed BBN based model 124

Figure 6.1. Recommended methods related to Waterfall phases with the most successful

metric suites .. 133

xvi

LIST OF TABLES

Table 2.1. The characteristics of the projects from public NASA dataset 22

Table 2.2. Attributes of NASA-93 dataset .. 24

Table 3.1. Classification scheme ... 41

Table 3.2. Software attributes and referencing studies ... 48

Table 3.3. Software metrics and referencing studies .. 49

Table 3.4. Context parameters of the public datasets .. 52

Table 3.5. Reported benefits of early software defect prediction 62

Table 4.1. Characteristics of software defect prediction methods 72

Table 4.2. The profile of the experts ... 76

Table 4.3. Frequency values of each criterion .. 78

Table 4.4. Numerical values of the expert opinions and mean / median values 80

Table 4.5. Base matrix for the decision tree analysis .. 83

Table 4.6. Base matrix (continued) for the Fuzzy TOPSIS evaluation 84

Table 4.7. Questionnaire for evaluation of SDP methods in the early phases 85

Table 4.8. Defined criteria and alternatives for Fuzzy TOPSIS application 87

Table 4.9. The aggregated fuzzy weights for the criteria under DQ and MCh 88

Table 5.1. Questionnaire filled for case study 1 .. 96

Table 5.2. The score and rankings of the methods recommended by Fuzzy TOPSIS 98

Table 5.3. Resulting AUC values of the classifiers ... 99

Table 5.4. Friedman with Nemenyi post-hoc test results for classifier performances .. 103

Table 5.5. Friedman with Nemenyi post-hoc test results for classifier performances .. 105

Table 5.6. Questionnaire filled for case study 2 .. 112

Table 5.7. The score and rankings of the methods recommended by Fuzzy TOPSIS .. 113

Table 5.8. Resulting performance values of the predictors ... 114

Table 5.9. Training times (millisecond) for each predictor regarding to iterations 114

Table 5.10. Decision Analysis and Empirical Results for Case Study 2A 115

Table 5.11. Basic information of Fenton dataset [21] ... 116

Table 5.12. Example data from public dataset [21] .. 117

Table 5.13. Questionnaire filled for case study 3 .. 118

Table 5.14. The score and rankings of the methods recommended by Fuzzy TOPSIS 119

Table 5.15: Performance results of the proposed models ... 125

xvii

Table 5.16. BBN based SDP models and reported performance values for Fentonôs dataset

presented in the literature .. 127

Table 5.17. FIS based SDP models and reported performance values for Fentonôs dataset

presented in the literature .. 129

xviii

ABBREVIATIONS

AUC Area Under the Curve

AHM Analytic Hierarchy Model

AHP Analytic Hierarchy Process

ANN Artificial Neural Network

ANOVA Analysis of Variance

ANP Analytic Network Process

BBN Bayesian Belief Network

BMMRE Balanced Mean Magnitude of Relative Error

BN Bayesian Network

CART Classification and Regression Trees

CC Closeness Coefficient

CMMI Capability Maturity Model Integration

COCOMO Constructive Cost Model

DA Decision Analysis

DAG Directed Acyclic Graph

DBMS Database Management System

DCh Data Characteristics

DQ Data Quality

DT Decision Tree

E Expert

ELECTRE Elimination and Choice Expressing the Reality

ERT Experience of requirement team

ESDP Early Software Defect Prediction

H High

IEEE Institute of Electrical and Electronics Engineers

xix

FIS Fuzzy Inference Systems

FNIS Fuzzy Negative Ideal Solution

FNR False Negative Rate

FPIS Fuzzy Positive Ideal Solution

FPR False Positive Rate

FRBC Fuzzy Rule Based Classifier

KLOC Thousands (Kilo) of Lines of Code

L Low

LinR Linear Regression

LOC Lines of Code

LogR Logistic Regression

M Medium

MAE Mean Absolute Error

MAPE Mean Absolute Percent Error

MC Model Construction

MCDA Multi Criteria Decision Analysis

MCh Method Characteristics

MDP Metrics Data Program

ML Machine Learning

MMRE Mean Magnitude of Relative Error

NASA The National Aeronautics and Space Administration

NB Naµve Bayes

NRMSE Normalized Root Mean Square Error

OO Object Oriented

PC Project Context

PD Probability of Detection

xx

PF Probability of False Alarm

PhD Doctor of Philosophy

PROMETHEE Preference Ranking Organization METHod for Enrichment of

Evaluations

QA Quality Assurance

RFD Requirement Fault Density

RIW Review, Inspection and Walkthrough

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

RQ Research Question

RS Requirements Stability

SDL Specification and Description Language

SDLC Software Development Life Cycle

SDP Software Defect Prediction

SLR Systematic Literature Review

SM Systematic Mapping

SVM Support Vector Machines

TNR True Negative Rate

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TPR True Positive Rate

UML Unified Modeling Language

VH Very High

VL Very Low

1

1. INTRODUCTION

By nature, software systems are structures that are constantly growing and becoming

increasingly complex. Research and development of techniques to facilitate and

accelerate the successful completion of software projects have been ongoing since the

1970s. Ensuring software quality during and after software development is an

indispensable task for those involved in software projects. Developing reliable software

within limited time, budget and resources makes this task even more difficult. Still,

project teams often spend at least 50% of development effort fixing defects, that could

have been avoided or fixed at less cost [1]. In the complexity of the software development

world, it is almost impossible to develop a software that is free of defects, but detecting

existing defects in a timely manner and minimizing them are very important requirements

for the product to be launched as reliable. It can be said that one of the most critical tasks

of project management is to eliminate existing defects in the software, and even ensure

that these errors do not occur, if possible.

Unfortunately, finding and fixing software defects are among the most expensive

software development activities [2]. Often, detecting and fixing software defects after

production are much costlier than detecting and fixing them early in the life cycle, such

as requirements and design phases. According to Boehm, one of the first researchers to

concretely exemplify this; if the cost of fixing a defect found at the requirement phase is

expressed as 1 unit, the cost at the design phase is 3 - 6 units; 10 at the coding phase;

increases to 15 - 70 units at the test phase; and 40 - 1000 units at the operation phase [3].

According to a NASA report that investigated cost escalation studies throughout the

project life cycle in the literature [4], those ratios were determined as in Figure 1.1.

2

Figure 1.1. Relative Cost Ratio for Fixing Software Defects per Life Cycle Phase [3]

Obviously, as software evolves and grows, the cost of fixing existing or emerging defects

increases dramatically. At the same time, it is crystal clear that the scope of these defects

will also expand. Considering that defects that were not found on time and have moved

on to later phases in the life cycle, especially during the coding phase, will spread to other

modules of the project, much more changes and effort will be necessary to fix these

defects. In addition, it is possible to say that the changes necessary to fix the common

defects may also cause new ones in the software.

All these reasons show the importance of detecting and fixing defects as early as possible

during the software life cycle, with the least cost and effort. Especially after the coding

phase of the software, various test activities (unit testing, integration testing, automatic

tests, etc.) can be carried out to detect defects related to the code. In addition, during the

coding phase, code review activities carried out before the new developed code are

merged to the version control system ensure that possible defects are noticed, and action

can be taken. However, all these activities mentioned can be performed when the software

moves to the coding phase, and there will be scenarios where the defects that emerged

during the requirements analysis or design phases will be transferred to the code without

being noticed.

0
200
400
600
800

1000
1200
1400
1600

1 3-8 7-16 21-78

29-1500

C
o

st
 R

a
tio

Life cycle phase in which found

3

At this point, a mechanism that systematically foresee the possible outcomes of the next

phases of the software by making use of several existing metrics before the coding

activities begin can be quite useful. As a matter of fact, predictive models are frequently

used to evaluate development risks and improve quality throughout the life cycle of

software development projects [5,6]. Such supportive models are the most important

auxiliary mechanisms to predict problem areas early and make necessary corrections [7].

In order to form an idea about the quality of the software with software defect prediction

throughout the software development life cycle (SDLC); it is intended for development,

testing and management teams to anticipate defect-prone and/or defective parts of the

software. Defect prediction models allow software developers to focus on defect-prone

pieces of code, thus helping to reduce the potential for future defects [8]. Considering that

software development companies can spend 50%-80% of their software development

effort on testing practices [9], it is seen that research on defect prediction models is very

critical in terms of cost savings in testing phases. Besides, it is reported that the analysis

and prediction of software defects are also needed within the scope of project

management [10,11]. In this context, it is recommended to use defect prediction models

to evaluate project progress, plan project management activities, improve product quality

and process management activities [12].

1.1. Software Defect Prediction (SDP) at Early Phases

Numerous defect prediction models have been presented in the literature over 40 years

[13,14]. These studies mostly use various data processing methods and software metrics

belonging to the late phases of the SDLC, such as testing or operational use. It is thought

that the application of the prediction models during and after the coding phase of the

software development will not be beneficial since it will be late to plan and control the

cost-effectiveness activities [12].

On account of this, it can be appropriate to build and use software defect prediction (SDP)

models earlier in software development life cycle, in terms of planning many corrective

and preventive activities such as quality estimation, and effective resource, calendar and

4

cost planning [12]. Besides, it has been reported that the application of defect prediction

models in the early phases of the SDLC, such as requirements analysis, design and/or

early coding phase, will be more beneficial in many ways [15]. It plays a critical role in

determining software quality, cost overrun, optimal development and testing strategy at

an early stage. A useful approach for early evaluation in projects using Waterfall or V

development model is to identify the number of defects in the requirements, design, or

coding phases by verification and validation activities [16], and use this information to

predict the number of defects in coding or testing phases [17]. In projects employing

incremental or agile development, early evaluation includes identifying defects in early

releases to predict defectiveness in later ones [18]. Cross-project defect prediction may

also enable early evaluation if its underlying requirements regarding defect data across

the projects are met [19]. In any case, foreseeing the defective parts of the software may

provide preventive actions such as additional inspections and more comprehensive

testing, therefore it helps to improve software process control and to ensuree higher

software quality [12]. In addition, early SDP models will be able to help an effective

decision-making process in the context of activities such as process improvement or

trade-off analysis from the early stages of development [20,21].

Despite the aforementioned benefits, software defect prediction can be seen difficult to

implement for a variety of reasons, such as context differences of software projects under

development, software metrics that are needed to collect, behavioral dynamics of

software team members, and different preferences of various software stakeholders.

However, as data science is becoming widespread, there is a proliferation in methods and

tools supporting prediction and estimation in software engineering, which makes

selecting the best-fit methods important for early and effective use of such facilities. In

addition, it is observed that the authors of SDP studies in literature are mostly academic,

which means that the expertise to use and select prediction methods and supporting tools

reside in academy rather than in industry. When the proliferation of methods of data

science in software engineering is combined with the shortage of knowledge to use them

in industry, an important need arises to guide practitioners in selecting and using the best-

fit methods. Therefore, it might be a good solution to address method selection problem

in software defect prediction by using a formal decision analysis process.

5

1.2. Goal and Research Questions

In this study, it is aimed to propose a decision analysis approach that can guide the

determination of the most appropriate defect prediction method that can be used in

software projects where defect prediction is desired from the early phases of the SDLC.

To address the main purpose of the thesis study, the following research questions (RQs)

were determined under five main headings.

RQ 1: What are the characteristics of early software defect prediction (ESDP) models?

¶ RQ1.1 Which types of datasets are used for performing the prediction? Identify

the datasets that are used in the prediction models.

¶ RQ1.2 What are the development phases that originate metrics for the prediction

models? Identify the phases that originate metrics as input to the prediction.

¶ RQ1.3 What are the entities that originate metrics for the prediction models?

Characterize the software entities that are used in the models.

¶ RQ1.4 What are the attributes of each entity, which originate metrics for the

prediction models? Categorize the attributes that are used in the models.

¶ RQ1.5 What are the software metrics that are used in the prediction models?

Identify and categorize the software metrics related to each attribute of each entity

used in the models.

¶ RQ1.6 What types of methods are used to build the prediction models? Identify

and categorize the methods used in prediction models in the studies. Example

methods include machine learning, fuzzy rule-based etc.

¶ RQ1.7 What are the contextual parameters reported in the prediction models?

Gather the contextual information about the metric data included in the models

for better revealing the factors that may affect the model construction.

6

RQ 2. Are models of ESDP successful and beneficial?

¶ RQ2.1 Which methods and measures are used for evaluating the performance of

the models? Categorize the performance evaluation methods and metrics that are

used for validating the models.

¶ RQ2.2 What are the performance values of the models based on the included

SDLC phases that originate metrics for prediction? Gather the performance results

of the studies with regard to SLDC phases in order to see the effects of the phase

information to the prediction performance.

¶ RQ2.3 What are the benefits of early defect prediction as reported in the studies?

Indicate the benefits or losses of using ESDP models if reported.

RQ 3. What is the current status of defect prediction applications in software companies

in Turkey?

¶ RQ3.1. If software defect prediction is applied, how does the company operate it?

¶ RQ3.2. If the company is applying SDP, what are the advantages or disadvantages

of applying it?

¶ RQ3.3. If the company is not applying SDP, what would be the benefits and/or

challenges in applying SDP in your company?

¶ RQ3.4. Is there a need for guidance on software defect prediction from the early

phases of SDLC?

RQ 4. How to select a method for early prediction of software defects?

¶ RQ4.1. What are the alternative methods for building ESDP models?

¶ RQ4.2. What are the criteria to consider when selecting a method for ESDP?

¶ RQ4.3. How should the most appropriate method be selected by evaluating the

defined criteria?

¶ RQ4.4. How should we gather the characteristics of the project data and the needs

of the users systematically?

7

RQ 5. How should we investigate the trustworthiness of the proposed SDP method

selection approach through case studies?

¶ RQ5.1: Which SDP methods are primarily suggested by decision analysis

approach?

¶ RQ5.2: Which SDP methods do perform better in execution?

¶ RQ5.3: Are there any difference between the results of RQ5.1 and RQ5.2?

1.3. Research Methods

Research methods describe the systematic processes that are carried out from the

beginning to the end within the scope of the thesis studies and are necessary to reach the

result. The research methods used in the thesis are explained below.

1.3.1. Literature Review

Systematic mapping (SM) studies are used to provide an overview of the research area

[22]. Within the scope of systematic mapping, the relevant evidence is examined at a

superficial level of detail, thus providing basic evidence that will contribute to possible

systematic literature review studies and identifying areas that should be focused more in

the field [23,24].

Systematic literature review (SLR) is a literature analysis method used for the purpose of

determination, evaluation and interpretation of the available research on a specific topic.

While individual studies contributing to the SLR are referred to as "primary studies";

systematic review itself is referred to as a ñsecondary studyò [23,25]. SLR studies can be

used to guide possible new studies by identifying gaps in the relevant field and presenting

various suggestions [22,23,25].

8

1.3.2. Case Study

Case studies are empirical investigations of various contemporary phenomena in a real-

life context [26]. The focus of case studies on making sense of context information is

important in terms of evaluating the methods and tools used in software engineering in

the industrial field [27].

1.3.3. Data Analysis

The data analysis method is used for both quantitative and qualitative research types.

Within the scope of quantitative data analysis techniques, descriptive statistical analysis

is generally performed. Mean value and standard deviation calculations and various visual

graphics are frequently used to help understand the collected data [28].

1.3.4. Survey

Surveys are generally conducted with the participation of various distributed individuals,

aiming to generalize from a sample to a population [29]. They often contain static

questions that provide quantitative answers that are easy to analyze [30]. In addition,

expert opinion surveys can be preferred for the evaluation of important factors and

gathering the recommendations of the experts on the subject.

1.4. Contributions

The contributions made as a result of the studies conducted within the scope of the thesis

can be summarized as follows:

¶ The first systematic mapping study in the literature that investigates process

properties for early phase defect prediction was presented [31]. Studies using

process-based metrics for reliability and defect prediction in the early phases of

the SDLC are discussed. Thus, the current picture of the literature is

systematically summarized, emphasizing the distinctive features of process

knowledge in the field of ESDP.

9

¶ Studies included information about the early phases of the SDLC, such as

requirements and design, into the defect prediction model were systematically

investigated. The performance changes in the studies that structured the prediction

model by using the early phase information with the coding phase information

were examined and thus, a unique contribution was made to the literature [32].

¶ A total of 52 scientific publications published between 2000 and 2016 was

examined in depth by systematic mapping and literature review method and

analyzed over a total of 16 research questions [15]. The trend and demographic

information of the primary studies, the maturity of the research situation, the

characteristics of the structuring of the prediction models, the methods used, the

metrics, datasets, the performances of the ESDP models and the benefits of using

these models were reported.

¶ Multi -criteria decision analysis methods were used for the first time in the

literature to determine the most appropriate early phase defect prediction method

for the project context. For this purpose, the criteria to be considered in the

selection and alternative SDP methods were determined according to the literature

analysis, and a decision matrix that evaluates these methods and recommends the

most appropriate one for the context was proposed [33].

¶ As a new contribution to the literature, a decision analysis approach has been

proposed for the selection of an SDP method for early phases [34]. In order to

enable software stakeholders to apply defect prediction from the beginning of the

life cycle of the relevant software project, the proposed approach aims to

systematically select the most appropriate defect prediction method in line with

the needs of the stakeholders and the characteristics of the related software project

data.

¶ A web application for the decision analysis has been developed using Angular,

Java and Spring framework. The source code has been made available and shared

on GitHub1 to enable researchers or practitioners to perform the decision analysis

using the determined criteria, weights, and the list of selected alternatives.

1 https://github.com/rozakinci/phd_thesis_app

10

1.5. Overall Design of Thesis Study with Mappings to RQs and Chapters

In Figure 1.2, the overall design of the thesis study is demonstrated with the connection

of the related RQs and consequent chapters.

Figure 1.2. The design of the thesis with mapping to the RQs and chapters

1.6. Thesis Organization

Chapter 2 presents the background of this thesis by summarizing the general context of

the software defect prediction. Chapter 3 examines the related work in the literature and

determines the studies on the research area systematically and reports the analysis results

within the scope of the research questions in detail. In addition, the survey conducted on

the application of software defect prediction in companies in Turkey is also included in

this chapter. Chapter 4 presents the necessary preparations for the selection of the early

phase defect prediction method, how the emerging know-how as a result of the extensive

work is systematically gathered and reported as a knowledge base, as well as the modeling

of the decision analysis approach. In Chapter 5, the case studies that have been structured

as an embedded multi-case design and experimental results related to the implementation

and validation of the proposed decision analysis approach are described. Next, Chapter 6

11

summarizes a few critical points and recommendations that have emerged as a result of

the thesis work. Finally, Chapter 7 summarizes the results obtained from the thesis and

the contributions to the literature. In addition, the limitations of the thesis and plans for

future studies are mentioned in this conclusion section.

12

2. BACKGROUND

2.1. What is ñDefectò?

In the IEEE Standard Classification for Software Anomalies [35], a common dictionary

has been created for the terms related to the errors that may be encountered throughout

SDLC in the context of software engineering. According to the standard, the definition of

defect is as follows:

¶ Imperfections or deficiencies that can be found in work products in the early

phases of the SDLC, causing the work product to fail to meet requirements and

needs to be fixed or replaced.

The definitions of other terms used in the same sense as the ñdefectò term are as follows:

¶ Error: Human action that can cause inaccurate results.

¶ Fault: Fundamental inaccuracies within the software program that can cause a

malfunction.

¶ Failure: Deviation of program behavior from user expectations, failure to fulfill

the expected function from the product under specified requirements and limits.

¶ Problem: Difficulty faced by the person while using a system, negative situation

that needs to be solved.

Based on these definitions; malfunctions, disorders and anomalies that may be

encountered in the early phases of the life cycle are discussed by using the term "defect"

throughout the thesis [36].

2.2. Software Defect Prediction

Software defect prediction activities can be explained as using the models that are built

via certain methods using different product, process, and/or resource-based metrics in

order to prevent or minimize defects during software development life cycle. Its main

purpose is to guide development, test and management teams to have an opinion on the

software quality and therefore make decisions that provide to focus more deeply in

13

defective code, plan test activities in an effective way and make better use of resources

[8].

2.2.1. Defect Prediction Approaches

In the field of data mining, the two most important types of prediction problems are

defined as "classification" and "numerical prediction" [37]. Software defect prediction

approaches are also divided into two as "classification as defective or non-defective" and

"prediction of number of defects" based on the dependent variable. The most used defect

prediction approaches can be grouped as follows according to their purpose of use:

¶ Classification2: Prediction of the category to which the data depends. The methods

used for classification include: Expert judgement-based models (Fuzzy Inference

Systems), Causal models (Bayesian Belief Network), Machine learning based

models (Naµve Bayes, Artificial Neural Network, Decision Trees, Logistic

Regression, Support Vector Machine).

¶ Numerical Prediction: Prediction of the number of defects. The methods used for

numerical prediction include: Expert judgement-based models (Fuzzy Inference

Systems), Machine learning based models (Artificial Neural Network, Decision

Tree, Linear Regression, Support Vector Machine).

In addition, it is possible to categorize the SDP methods based on the approach to

construct the model. In the context of ESDP, the most preferred approaches to construct

the model can be said as machine learning (ML) based methods because of their ability

to solve classification and prediction problems. Statistical methods are also preferred like

ML based methods. In addition, it is possible to construct SDP models by considering the

2 The term ñclassificationò can be used to categorize a defect as belonging to certain

classes, as in defect classification schemes, or to refer to a software defect prediction

approach that involves classifying parts of software as defect-prone and defect-free.

Throughout the thesis, the term "classification" is used for the defectiveness classification

of a software part.

14

expert judgement-based approaches or causal methods. Therefore, we also present the

below categorization of SDP methods:

¶ Machine Learning based methods: Supervised learning-based methods can be

used in both classification and regression problems. Some implementations of this

type include Artificial Neural Networks (ANN), Bayesian Networks (BN),

Decision Trees (DT), Naµve Bayes (NB), and Support Vector Machines (SVM)

[38].

¶ Statistical methods: These methods can also be preferred when applying SDP

since they can be used in prediction models to be configured for both classification

and regression [10]. Linear Regression (LinR) and Logistic Regression (LogR)

methods can be categorized as statistical methods.

¶ Expert judgement-based methods: Fuzzy Inference System (FIS) based models

can be constructed through a set of rules created according to expert judgment.

The most important feature of the FIS methods is that they are independent from

data and can handle imprecise data [39]. BN based models can also be built by

expert judgement when there is sparse data and are known to be successful to

address dependencies between attributes and handle uncertainty [21,40].

2.2.1.1. Statistical methods

Linear Regression (LinR)

It is one of the most known and best understood algorithms in statistics. When the class

variable to be estimated and all attributes are numeric, the linear regression method is one

of the simplest techniques to consider. A linear regression aims to find the line that best

fits the relationship between the input variables (x) and the output variable (y). It can be

defined as an equation (y = C0 + C1 * x) that detects and defines certain weights for input

variables called coefficients (C) [41].

The purpose of the linear regression equation is to find the coefficient values when

predicting the output (y) according to the input (x), namely C0 and C1. Some

recommended good practices for linear regression are to exclude similar (related)

variables from the dataset and, if possible, to remove noisy data. As a result, it is highly

15

preferred for numerical defect prediction in the field of SDP as it is a fast and simple

technique.

Logistic Regression (LogR)

It is used to classify a categorical class variable based on the relationship between one or

more numerical or categorical independent variables. It is similar to the linear regression

method in that it aims to find the values of the coefficients that give weight to each input

variable. Unlike LinR, a nonlinear function called logistic function is used to predict the

output class. The logistic function has a structure similar to the letter ñSò and converts

any value into the range from 0 to 1 [37].

Thanks to the learning nature of the model, the predictions made by logistic regression

can also determine the probability for the class to which the output belongs. This can

provide a more meaningful result for the prediction problem. Logistic regression function,

like LinR, performs better in the scenarios where attributes are related to the output and

dependency between attributes does not exist. As a result, it is preferred for software

defect classification problems since it is fast and effective.

2.2.1.2. Machine learning-based methods

Artificial Neural Network

The artificial neural network model is inspired by the human brain's ability to derive new

information through learning. It consists of many small neuron-like elements called units

and the directional and weighted relationships between these units. The layers are

typically called the input layer, hidden layer, and output layer. There may be more than

one hidden layer between the input and output layers. It is known to be more effective

than other methods in modeling nonlinear functional relationships. It is generally used to

predict the number of defects per class with object-oriented metrics [42]. However,

artificial neural networks can be easily applied to very large datasets and can give results

with higher accuracy than other methods [43]. They are suitable for problems where the

number of feature-value pairs is high, the training set contains outliers / missing data, and

the long training time is acceptable. The multiplicity of the number of connections, layers

16

and nodes determines the complexity of the system they can represent, the more nodes

there are, the more complex (advanced) systems can be modeled. With these features,

artificial neural networks solve problems that cannot be solved by classical algorithmic

methods, similar to the system of the human brain [44].

Bayesian Classifiers

Bayesian classifiers are statistical classifiers based on Bayes theorem that aims to find the

probability that a sample belongs to a class under given conditions. The most important

feature is that they are incremental. That is, old knowledge can be used for observed data.

Accordingly, the calculated probability increases or decreases incrementally [45]. Bayes

rule states that "Based on the arguments we observe, what is the probability that the output

belongs to class C?" and answers the question. Suppose Y is the class variable and X is

the collection of independent classes. In this case, the formulation of the question "Given

X, what is the probability that the result is of class C?" is given in Equation 2.1 [41]:

 0Ò 9 # ȿ 8
 ȿ

 (Eq 2.1)

Naive Bayes

Naive Bayes, one of the Bayesian classifiers, has the advantage of handling various and

independent features, missing values and noisy data. It also achieves results very quickly.

The most obvious disadvantage of Naive Bayes is that it assumes that classes are

conditionally independent. This assumption may cause a loss of accuracy [46].

Bayesian Networks (BNs)

Bayesian networks are represented by directed acyclic graphs, where each node defines

a separate variable. Relations between these variables can be shown with Bayesian

networks (such as the order of transition from one node to another). Bayesian networks

generally consist of two parts [47]:

¶ Directed acyclic graph (DAG): The nodes in the graph can be defined as model

variables and the connections between the nodes represent the causal effects

among the variables.

17

¶ Conditional probability distributions (CPT): Unconditional probability

distribution is applied for nodes with no ancestors. For nodes with ancestors,

conditional probability distributions are made depending on the status of their

ancestors.

Bayesian networks has many advantages. It has the ability to handle missing data, where

each variable is assigned a preliminary probability, thus, if no input is provided for a

variable, the default value of the probability is used in the computations. The BN models

are generally easy to interpret, as the causal relationships between the variables are clearly

visible in the graph. It can combine different types of data (e.g., quantitative and

qualitative) where they can be used as inputs in model designs. Inputs and outputs do not

have to be defined statically; a variable is an input if the user can observe it; if no

observation can be made about the variable, it becomes an output.

Decision Trees

The structure of a decision tree is simple. The starting node in the tree is the root node.

Each internal node represents the decision point that contains questions or criteria to be

answered. The branches that connect nodes reflect the flow from question to answer.

Lastly, leaf nodes give a result or result-set, which applies to all nodes that reach the leaf

[38]. Decision tree algorithms have many implementations. The most common ones are

ID3, C4.5, CART (Classification and Regression Trees). Classification trees are suitable

for classifying the defectiveness of software components. Regression trees, on the other

hand, can predict the number of defects [48]. Decision trees can use multidimensional

data. The learning and classification process of the decision trees is often fast. Besides,

they yield high performance prediction results generally. However, their performance can

be affected from the nature of the data [37,38,41].

Support Vector Machines

It uses a non-linear mapping to convert the original training data to a higher dimension.

Within this new dimension, the linear searches for the best parsing hyperplane (i.e., a

"decision boundary") separates the threads of one class from another. With a suitable

18

nonlinear mapping in a sufficiently high dimension, data from the two classes can always

be separated by a hyperplane, which can be found with the help of support vectors and

margins [38]. SVM can be applied on both linear and nonlinear data. The learning phase

can be slow; however, it has a high accuracy rate generally thanks to its ability to model

complicated and nonlinear decision boundaries. They are prone to over-learning

compared to other methods.

Genetic Algorithms

Genetic algorithms produce a set of solutions instead of producing a single solution to

problems. Many points are evaluated at the same time in the search space, and as a result,

the probability of reaching a holistic solution increase. It has been stated that it is suitable

for use in scenarios where assumptions are excluded and the model focuses only on defect

data [49]. The reasons for this are that genetic algorithms do not make any assumptions

about data distribution, are not a parametric method, and do not form the model in a

specific structure [49].

Ensemble Learning

It is a machine learning approach that is generally used for improving the prediction

accuracy of classifiers. More than one classifier is trained to solve the same problem and

these classifiers are combined to obtain stronger generalization ability [37]. As it will be

explained in the following sections, ensemble learning methods are not included within

the scope of the thesis, since it is desired to compare machine learning methods with their

simplest forms.

2.2.1.3. Expert judgement-based methods

Fuzzy Inference Systems (FIS)

The fuzzy classification technique describes the dataset with approximate (partial

membership) values without having precise and defined boundaries. For a software

segment to be classified as defective, it must be defined with a membership value between

0 and 1. Using the data classified by the model based on fuzzy inferences, the ñmodule-

ordering modelò predicts whether that module is defect-prone [50,51]. The most

19

important advantages of fuzzy logic-based methods can be listed as follows [52]. Data

independence is the most important advantage of the FIS method. FIS models perform

the modeling of the desired environment with the help of experts on research field, not

by learning from data. Since it does not need historical data, it can be used from the

beginning of the software project, providing faster results and usage repeatedly for the

same research field. FIS models are said to be more suitable for defect prediction than

data-driven methods. Models created can also be used for other software projects

regardless of the domain, as they are data independent. Verbal, qualitative and non-

numerical data are also well suited to use in fuzzy inference models.

The steps to be followed while building fuzzy models can be listed as follows:

1. Determination of membership functions of inputs and outputs

Membership Functions (5 Scales) for linear scale:

Å VL (0; 0; 0.25),

Å L (0; 0.25; 0.50),

Å M (0.25; 0.50; 0.75),

Å H (0.50; 0.75; 1.00),

Å VH (0.75; 1.00; 1.00)

Membership Functions for logarithmic scale (3 Scales):

Å L (0; 0; 0.37),

Å M (0; 0.37; 1),

Å H (0.37; 1; 1)

2. Determination of fuzzy logic rules: Various rules are determined by the field expert

according to fuzzy sets and verbal variables. For a successful model design, all verbal

variables in the fuzzy rule set and combinations of all verbal values of these verbal

variables should be included. The number of rules is calculated by multiplying the

number of verbal values of each verbal variable with each other. For example, the

20

number of rules required for an FIS consisting of 3 verbal variables and where each

variable has 4 verbal values is 4 * 4 * 4 = 64.

3. Fuzzy inference: The fuzzy inference process can be explained as follows, in order:

¶ Fuzzification of the determined inputs using membership functions

¶ Performing the execution of fuzzy logic rules

¶ Generating the fuzzy outputs of rules

4. Defuzzification step: After producing the fuzzy outputs, the defuzzification step is

applied, where the fuzzy output is converted to crisp output. Although the fuzzy

output helps to interpret the crisp values given as input, it does not tell the final

decision, so the fuzzy output needs to be converted to crisp output. This conversion

is called defuzzification. There are several types of models that vary in the technique

they use for the crisp output generation step. The most used types are Mamdani,

Sugeno and Tsukamoto.

2.2.2. Software Metrics

Software metrics enable us to understand and evaluate many aspects of software, thus to

plan and track critical aspects throughout the project life cycle. The healthier we can

perform the software measurement process, the more accurately we can control the

software quality.

¶ Measurement: It is the process of assigning a value to an attribute. It can be a

figure, size or quantity obtained as a result of the measurement process [53].

Measurement is also defined as the process of assigning numbers or symbols to

the properties of real-world entities, according to strictly defined rules [54].

¶ Metric: Indicates the level at which a product, system, component or process

possesses a certain attribute [50].

21

According to Fenton and Bieman [54], it is important to define the entities and attributes

of the measurements as the first rule of thumb for performing software measurement

activity. Based on Fenton and Bieman's classification, entities within the scope of

software measurement activities are divided into three:

¶ Process: Refers to activities related to the software.

¶ Product: Outputs or documents obtained from a process activity.

¶ Resource: Refers to the entities required to perform the process activities.

Product metrics allow to measure structural and physical properties such as size (source

code, requirement specification document size, size of design documents, etc.),

complexity, length, dependency, and interactivity. The metrics defined in the Chidamber

& Kemerer metric set [55] are the most widely used design and coding phase metrics for

SDP in object-oriented software [56]. Process metrics measure the efficiency and

effectiveness of software development processes, the duration of process activities, the

effort spent, and the number of errors seen throughout the process. Since defects can be

encountered from the earliest stages of software development processes, process metrics

will be useful in SDP [57]. Resource metrics enable to measure the characteristics of the

personnel (developer, designer, test staff, etc.) working in software development projects,

such as experience, motivation, the characteristics of resources such as software and

hardware needed in the project, and the structure of the working environment [54].

For each metric class (process, product, resource) it is divided into internal and external

characteristics:

¶ Internal properties: can be measured by the product, process or resource itself.

¶ External properties: can be measured by how the product, process or resource

relates to its environment, i.e., taking into account its behavior.

22

2.2.3. Public Datasets

2.2.3.1. PROMISE Repository ï NASA Dataset

PROMISE data repository contains open datasets published to support the creation of

prediction and/or decision support models in the field of software engineering on various

topics (defect prediction, cost estimation, effort estimation, subsequent release

monitoring etc.). It is aimed that the relevant prediction models can be applied by different

researchers in the field or experts in the industry. The most used dataset in the software

defect prediction field in this data repository has been published under MDP (Metric Data

Program), a metric program created by NASA. In this context, there is data on 12 projects

published. The PROMISE repository is currently not accessible [58], but a backup for the

data is available fortunately and stored in GitHub [59]. The most used ones are given in

Table 2.1.

Table 2.1. The characteristics of the projects from public NASA dataset

Project

Name

Programming

Language

Total

Sample

Number

Samples

Marked as

Defective

Defectiveness

Rate (%)

Number of

Attributes

Dataset

Size

CM1 C 327 42 12.8 38 Small

JM1 C 7,720 1,612 20.9 22 Large

KC1 C++ 1,162 294 25.3 22 Large

KC3 Java 194 36 18.6 40 Small

MC1 C++ 1,952 36 1.8 39 Large

MC2 C 124 44 35.5 40 Small

MW1 C 250 25 10.0 38 Small

PC1 C 679 55 8.1 38 Medium

PC2 C 722 16 2.2 37 Medium

PC3 C 1,053 130 12.3 38 Large

PC4 C 1,270 176 13.9 38 Large

PC5 C++ 1,694 458 27.0 39 Large

23

2.2.3.2. NASA-93 Dataset

It is an open dataset containing data from 93 projects prepared by NASA for use in the

COCOMO model in the 90s, and later defect number data was added [60]. The attributes

were demonstrated in Table 2.2, with their related software entity categorization. There

are a total of 25 attributes in the version with defect data, which consists of:

¶ 15 standard COCOMO-I discrete attributes in the range from ñVery Lowò to

ñExtra Highò

¶ 7 attributes describe the features of the project

¶ one of them describes the number of lines of code

¶ one of them is the actual effort in person months

¶ the dependent attribute is the number of defects

Further detailed descriptions can be found in the COCOMO II model manual [61].

2.2.3.3.Fenton Dataset

Fenton et al. proposed a causal defect prediction model using several quantitative and

qualitative process factors [20,21]. The design of the model and the specified qualitative

factors were first described in [20]. After that, they extended this work to describe the

prediction model in more detail and validate it [21]. The most critical output of this study

is the open dataset they provide to the literature3. Their main motivation for presenting

their raw data is the possibility of enabling different SDP methods to be implemented by

other researchers, and that the results are useful for software project managers to use

practically.

3 Throughout the thesis, the Fenton dataset is referred from their extended work [21].

24

Table 2.2. Attributes of NASA-93 dataset

Entity Attribute Abbreviation Type

Product Precedentedness prec {h} Nominal

Product Development Flexibility flex {h} Nominal

Process Architecture and Risk Resolution resl {h} Nominal

Resource Team Cohesion team {vh} Nominal

Process Process Maturity pmat {l,n,h} Nominal

Product Required software reliability rely {l,n,h,vh} Nominal

Product Database size data {l,n,h,vh} Nominal

Product Product Complexity cplx {l,n,h,vh,xh} Nominal

Product Developed for Reusability ruse {n} Nominal

Product Documentation match to life-cycle needs docu {n} Nominal

Product Execution Time Constraint time {n,h,vh,xh} Nominal

Product Main Storage Constraint stor {n,h,vh,xh} Nominal

Product Platform Volatility pvol {l,n,h} Nominal

Resource Analysts capability acap {n,h,vh} Nominal

Resource Programmers capability pcap {n,h,vh} Nominal

Resource Personnel continuity pcon {n} Nominal

Resource Application experience apex {l,n,h,vh} Nominal

Resource Platform experience plex {vl,l,n,h} Nominal

Resource Language and Tool Experience ltex {vl,l,n,h} Nominal

Resource Use of Software Tools tool {n,h} Nominal

Resource Multisite development site {n} Nominal

Resource Required Development Schedule sced {n,l,h} Nominal

Product Equivalent physical 1000 lines of source code kloc Numeric

Process Development effort in months effort Numeric

Process Number of defects defects Numeric

The dataset contains data on 31 software projects developed in the consumer electronics

industry. The scope of the projects is the development of embedded software in consumer

electronics products, and it is aimed to develop several functions provided by a product

in each project. The developed software are not independent systems, and they are

developed as subsystems of other software in the electronic product. Waterfall approach

is followed as the SDLC. In the software engineering part of the life cycle, requirements

documentation review, design, design review, coding and unit testing activities are carried

25

out. Later, the software is put into independent testing at many stages, from integration

testing to system testing. Requirements analysis and independent testing processes are

usually performed in a different location than the coding.

Data are collected through questionnaires conducted with project managers, quality

managers and/or expert project personnel of the relevant projects. Qualitative data from

surveys have 5 scales and can take the following values in order: Very High, High,

Medium, Low, Very Low. There are areas such as explanations and detailed sub-

questions regarding the questions. For example, if there are 10 sub-questions for a

question, if all sub-questions are answered yes, the score of the question will be VH, if 7-

9 of them are yes, the score will be H, and so on. For example, for gathering the answers

on factor ñS1 - Relevant Experience of Spec and Doc Staffò, the main question and

additional questions were defined as follows:

Question: How would you evaluate the experience and skill level of your team members

who took part in the requirement phase of this project?

¶ Sub-question1: Did the requirements team have sufficient experience?

¶ Sub-question2: Did the requirements team have sufficient domain expertise?

Sample Answers:

¶ Very High: Software engineers with more than 3 years of requirements

management experience and extensive domain knowledge.

¶ High: Software engineers with more than 3 years of requirements management

experience but limited domain knowledge.

¶ Intermediate: Software engineers with 1 to 3 years of experience in requirements

management.

¶ Low: Software engineers with 1 to 3 years of experience but no experience in

requirements management.

¶ Very Low: Software engineers with less than 1 year of experience and no previous

field experience.

26

The identified factor groups and related factor names were demonstrated in Figure 2.1.

Figure 2.1. Factors in Fenton Dataset [21]

2.2.4. Performance Evaluation Measures

In order to choose an approach for the performance evaluation of defect prediction

models, first of all, the type of the predicted dependent variable should be considered. In

this context, it is possible to divide the models into two [8]:

Factor group Factor ID and Name

Specification and

documentation process

S1 Relevant Experience of Spec and Doc Staff

S2 Quality of Documentation Inspected

S3 Regularity of Spec and Doc Reviews

S4 Standard Procedures Followed

S5 Review process effectiveness

S6 Spec Defects Discovered in Review

S7 Requirements Stability

New functionality F1 Complexity of New Functionality

F2 Scale of New Functionality Implemented

F3 Total Number of Inputs and Outputs

Design and development

process

D1 Relevant Development Staff Experience

D2 Programmer Capability

D3 Defined Processes Followed

D4 Development Staff Motivation

Testing and rework Factor T1 Testing Process Well Defined

T2 Testing Staff Experience - unit

T3 Testing Staff Experience - integrated

T4 Quality of Documented Test Cases

Project management P1 Development Staff Training Quality

P2 Requirements Management

P3 Project Planning

P4 Scale of Distributed Communication

P5 Stakeholder Involvement

P6 Customer Involvement

P7 Vendor Management

P8 Internal Communication/Interaction

P9 Process Maturity

Quantitative Data E Total Effort

K KLOC

L Language

TD Total Defects

27

¶ Categorical Models: use categorical variables (defective or non-defective) as

dependent variable. Models created with classification methods fall into this

group.

¶ Continuous Models: use numerical variables (number of defects) as dependent

variables. Models created with numerical prediction methods fall into this group.

2.2.4.1. Measures Used in Performance Evaluation of Categorical Models

In categorical models, the evaluation of the prediction performance of the model is

basically made by confusion matrix analysis given in Figure 2.2 [62]. This matrix uses

various calculations where the model considers actual class labels to measure how it

classifies different categories. In other words, the class label predicted by the model is

compared with the class label to which the dependent variable actually belongs.

¶ True Positive (TP): The class label (ñdefectiveò) was predicted correctly.

¶ False Positive (FP): The class label (ñnon-defectiveò) was guessed incorrectly

(ñdefectiveò). Also known as Type I Error.

¶ False Negative (FN): The class label (ñdefectiveò) was guessed incorrectly (ñnon-

defectiveò). Also known as Type II Error.

¶ True Negative (TN): The class label (ñnon-defectiveò) was predicted correctly.

Figure 2.2. The confusion matrix

Based on this matrix, many performance evaluation measures can be derived [63] as listed

below. The sysnonims and formulations of these measures are presented in Figure 2.3.

28

Figure 2.3. Performance evaluation measures

¶ True positive rate (TPR): It is synonymous with Recall, probability of detection

(pd) and Sensitivity. It refers to the rate at which the class that is actually labeled

as ñdefectiveò is predicted as ñdefectiveò in the prediction result.

¶ False positive rate (FPR): It is synonymous with probability of false alarm (pf)

and Type-I Error. It refers to the rate at which the class labeled as ñdefect-freeò is

predicted as ñdefectiveò in the prediction result.

¶ True negative rate (TNR): It has the same meaning as Specificity. It refers to the

rate at which the class labeled as ñdefect-freeò is also predicted as ñdefect-freeò

in the prediction result.

Measure Synonyms Formulation

True positive rate (TPR)
Recall

Probability of detection / pd

Sensitivity

Ὕὖ

Ὕὖ+ Ὂὔ

False positive rate (FPR)
Probability of false alarm / pf

Type-I Error

Ὂὖ

Ὂὖ+ Ὕὔ

True negative rate

(TNR)

Specificity

Ὕὔ

Ὕὔ+ Ὂὖ

False Negative rate

(FNR)

Type-II Error Ὂὔ

Ὕὖ+ Ὂὔ

Precision
 Ὕὖ

Ὕὖ+ Ὂὖ

f-measure
 2 × ὙὩὧὥὰὰ × ὖὶὩὧὭίὭέὲ

ὙὩὧὥὰὰ+ ὖὶὩὧὭίὭέὲ

Accuracy
 Ὕὖ+ Ὕὔ

Ὕὖ+ Ὕὔ+ Ὂὖ+ Ὂὔ

Misclassification rate
Error-rate 1 ὃὧὧόὶὥὧώ

Balance
 1

(ὖὊ2 + (1 ὖὈ)2

Ѝ2

29

¶ False negative rate (FNR): It has the same meaning as Type-II Error. It refers to

the rate at which the class that is actually labeled as ñdefectiveò is predicted as

ñdefect-freeò as a result of the prediction.

¶ Precision: refers to the rate at which ñdefectiveò predictions are made correctly.

¶ f-measure: It is expressed as the harmonic mean of the precision and recall values.

¶ Accuracy: The ratio of correctly classified units.

¶ Misclassification rate: It has the same meaning as Error-rate. It is the proportion

of incorrectly classified units.

¶ Balance: It expresses the distance to the most perfect point, defined as PD=1 and

PF=0, in terms of PD and PF calculated as a result of the estimation.

ROC Curve and AUC Value

ROC Curve (Receiver Operating Characteristic curve) is a method applied to interpret

classification performance graphically. As shown in Figure 2.4, the ROC curve graph has

two dimensions: PD (true positive rate) on the y-axis and PF (false positive rate) on the

x-axis. The most successful classifiers have high PD and low PF.

Figure 2.4. ROC curve

30

AUC (Area Under the Curve) refers to the area under the ROC curve. When PD is equal

to PF, the area under the ROC line is an isosceles triangle with sides of length 1; thus the

AUC value is 0.5. If the AUC value is calculated over 0.5 in the performance evaluation

of a model, it can be said that the model gives acceptable prediction results, and the results

get better as it gets closer to 1.

2.2.4.2. Measures Used in Performance Evaluation of Continuous Models

Co-efficient of determination (R2): It is a statistical measure of goodness-of-fit, which

measures how good the predicted regression equation is. It has the range of values

between 0 and 1, where higher R2 represents more confidence in the equation. Suppose

we have existing values yi and predicted values yôi (for i = 1, 2, 3, ... , n; n ɴ N), where

y←I is a mean value of yǋi,

R2 = ρ
В

В
 (Eq 2.2)

Root mean square error (RMSE): Relative squared error takes the total squared error and

normalizes it by dividing by the total squared error of the predictor. Then taking the

square root of the relative squared error, reduced error being predicted is calculated.

 RMSE = В ÙÉÙÉ (Eq 2.3)

Normalized root mean square error (NRMSE): It shows the ratio between RMSE and

existing values. The NRMSE value can be used to compare single model performance.

 NRMSE =

 (Eq 2.4)

Mean Magnitude of Relative Error (MMRE): It is the arithmetic mean of absolute relative

error. The lower it is, the better the prediction.

MMRE = В (Eq 2.5)

31

Balanced Mean Magnitude of Relative Error (BMMRE): It is a balanced version of the

MMRE that deals more with underestimation than overestimation.

BMMRE = В
 ȟ

 (Eq 2.6)

2.2.5. SDP During Early Phases

Most SDP models are generated using metrics from the coding and testing phases of the

SDLC. However, when it comes to those phases, it may be too late to plan corrective and

preventive actions effectively. As a solution to this problem, it can be appropriate to build

and use SDP models in the early phases of the SDLC, which can be defined as

requirement analysis or design phases, in terms of many activities such as quality

estimation, effective resource, calendar and cost planning in the software life cycle

[12,64].

In the earlier phases of SDLC, project teams do not have any metrics related to source

code or testing, or reported defect data from the product environment that could be used

to predict future defects of the software. Therefore, the data and metrics that can be used

early in the SDLC can be summarized as follows:

¶ Sub-product data that can be collected from early-phase sub-products (such as

requirement specification document and design documents).

¶ Process-based data that can be collected from early-stage processes (requirements

analysis, design, early stages of coding).

¶ Resource-based data on the experience of the software development team and the

availability of other resources.

¶ Qualitative data based on expert opinions that can be obtained in the early stages

from the opinions of experts who can evaluate the software according to the

software context parameters.

¶ Historical project data similar in context to the related software.

32

2.3. Decision Analysis

In complex situations that require in-depth knowledge of the subject to be decided, a

decision analysis process should be performed using systematic methods among the

alternatives. The definition of decision making is expressed as choosing the most

appropriate one among the alternatives to be considered in terms of goals, objectives,

values and criteria [65]. According to Fulop [66], a general decision-making process can

be divided into the following steps:

1. Define the problem,

2. Determine requirements,

3. Establish goals,

4. Identify alternatives,

5. Define criteria,

6. Select a decision-making tool,

7. Evaluate alternatives against criteria,

8. Validate solutions against problem statement.

Especially for the decision-making problems involving high risk and uncertain scenarios,

it is a possible approach to first use a decision tree to see the potential results, and then

apply the multi criteria decision anaylsis (MCDA) on these potential results to reach the

final result over the total preference score [67]. These two analysis methods used in the

decision analysis approach within the scope of the thesis are summarized below.

2.3.1. Decision Tree

In decision-making systems, decision tree is one of the best-known techniques. They

allow to make decisions through a ñtop-down, divide-and-conquerò approach to the

problem by addressing a set of decisions available in the tree nodes.

In decision analysis context, there are a couple of advantages of decision trees [68]. A

rule set emerges as a result of structuring decision trees, thus providing clarity and

33

conciseness for decision makers by making it easier to explain the decisions taken, which

can be presented in an interpretable format. Not all decision attributes may be helpful in

the same way for different decision-making contexts. For those types of problems,

decision trees ensure that the suitability of different attributes depends on the results of

the previous tests, thus they have a high context sensitivity. Besides, they can successfully

handle both continuous and discrete attributes. They can be combined with other decision

techniques. No domain knowledge is required for the construction of decision trees, so it

is suitable for knowledge discovery.

2.3.2. MCDA

Multi -criteria decision analysis is a set of formal approaches to address complex decision

problems in a scientific and analytical framework, aimed at assessing multiple criteria for

a decision maker to reach the most appropriate solution [69]. There are different MCDA

methods in the literature, each with its own characteristics and categorized in many

different ways [70]. The best known methods can be listed as AHP (Analytic Hierarchical

Process) [71], ELECTRE (Elimination and Choice Expressing the Reality) [72], TOPSIS

(Technique for Order Preference by Similarity to Ideal Solution) [73] and PROMETHEE

(The Preference Ranking Organization METHod for Enrichment of Evaluations) [74].

Fuzzy set theory can be applied to address uncertainty issues that may arise in a few

situations where the criteria are vague or decision makers are unsure how to evaluate the

relevant criteria [75]. Fuzzy TOPSIS introduced by Chen and Hwang [76] by extending

the TOPSIS method using linguistic variables represented by triangular fuzzy numbers.

Later, studies that utilizes fuzzy logic theory with TOPSIS method continued in the

literature [77ï79]. The basic logic of the Fuzzy TOPSIS method is that the selected

alternative should have the shortest distance to the Fuzzy Positive Ideal Solution (FPIS)

that maximizes the benefit criteria and minimizes cost criteria, and the farthest distance

to Fuzzy Negative Ideal Solution (FNIS) that maximizes the cost criteria and minimizes

the benefit criteria [78,79]. The general steps of Fuzzy TOPSIS method can be

summarized as follows [78,80]:

34

1. Determine the appropriate linguistic variables for ranking alternatives with respect to

each criterion.

2. Assign weights to the criteria and ratings to the alternatives.

3. Calculate the aggregated weight of alternatives with respect to each criterion.

4. Compute the normalized fuzzy decision matrix.

5. Compute the weighted normalized fuzzy decision matrix.

6. Calculate the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution

(FNIS).

7. Determine the distance of each alternative from FPIS and FNIS.

8. Calculate the closeness coefficient (CCi) for each alternative.

9. Rank the alternatives.

The most important advantage of Fuzzy TOPSIS method is that when the decision makers

evaluate the alternatives, they benefit from using a natural language to describe their

subjective judgement in a quantitative manner [80].

35

3. RELATED WORK

3.1. Secondary Studies on SDP

Numerous software defect prediction papers have been published in the literature.

Therefore, there are many literature review and analysis studies about these papers. These

secondary studies have surveyed the literature according to several aspects of the defect

prediction models, such as methods, metrics and performance evaluation methods. We

have analyzed these studies in software defect prediction literature by grouping them

based on their research method (Systematic Literature Review (SLR), Systematic

Mapping (SM), and Literature Review). We should note that research methods of the

secondary studies were classified based on the guidelines provided by Petersen et al. [22]

and Kitchenham and Charters [23]. If any guidelines were not followed in secondary

studies, we classified them as literature review.

3.1.1. Systematic Literature Review Studies

¢atal and Diri [10] reviewed software defect prediction papers by examining their types

of metrics, methods and datasets. The results show that the usage of the public datasets

and machine learning approaches increased significantly after 2005 when PROMISE

repository was created.

Hall et al. [8] investigated the performance values of SDP models in their systematic

review study in 2012, included 208 experimental studies published between 2000 and

2010, and examined a subset of 36 out of 208 studies. The main objective was to evaluate

the context information, input variables and modeling techniques and their effects to the

performance of the models. The main findings showed that models based on simple

approaches such as Naµve Bayes or Logistic Regression performed well. Besides, the

combination of different input variables, and usage of feature selection techniques

resulted in better performance.

Radjenovic et al. [81] reviewed software metrics and their usability in SDP over 106

studies. They reported that object-oriented (OO) metrics were used nearly twice as often

36

compared to traditional source code or process metrics. They also stated that OO and

process-based metrics are more successful than size and complexity metrics in predicting

defects.

Malhotra [82] analyzed the performance of the machine learning techniques for SDP

models through 64 studies in 2015, and summarized the characteristics based on metrics

reduction techniques, metrics, datasets and performance measures. It was concluded that

the machine learning techniques had acceptable defect prediction capability and could be

used by software practitioners and researchers.

Wahono [83], identified and analyzed the research trends, datasets, methods and

frameworks used in SDP studies published between 2000 and 2013. The results showed

that about 77% of the studies were focused on classification methods, and 65% of the

research studies used public datasets.

3.1.2. Systematic Mapping Studies

Murillo -Morera et al. [84] investigated the software metrics, prediction techniques based

on data mining or machine learning and their performance over 70 studies. They found

the frequently used combination of metrics and methods as follows: Halstead, McCabe

and LOC metrics with Random Forest, Naive Bayes, Logistic Regression and Decision

Tree methods.

¥zakinci and Tarhan [31], presented initial results from a systematic mapping of 41 early

software defect prediction studies published between 2000 and 2015, and reviewed 18

papers in detail and in a narrower scope, to elicit the process attributes and metrics used

in the models. It was observed that 44% of the early defect prediction studies build the

prediction model by using process-based data, such as effort of the review activities, or

requirement stability metrics.

37

¥zakinci and Tarhan [15], systematically mapped and reviewed 52 primary studies

published between 2000 and 2016. They provided a general view about the

characteristics, performances, and usefulness of ESDP models by elaborating on the

prediction methods, software metrics, performance evaluation approaches used in the

studies, as well as the reported benefits of using ESDP models. This study differs from

the existing works in that it is the first study that focuses on the literature about early

software defect prediction in a systematic and comprehensive manner.

3.1.3. Other Literature Reviews

Catal [85] investigated 90 software defect prediction papers published between 1990 and

2009. This review provided a guide for researchers to investigate the studies on software

metrics, methods, datasets, and performance evaluation metrics.

Jureczko and Madeyski [86] presented a review and investigated process-based metrics

in SDP. They focused on the most important results, recent advances and summary

regarding the use of these metrics in prediction models. They reported that employing

process metrics in the defect prediction could lead to better results than working only with

the product metrics.

Singh et al. [87] investigated various prediction methods used in the area over 20 studies.

According to the results, researchers have mainly used multivariate regression analysis,

genetic algorithms, neural networks, Bayesian network techniques for SDP. It is stated

that NASA datasets are the most common data source and widely used in the area.

3.2. Studies Focus on SDP Frameworks

Several studies that propose different frameworks in the field of SDP research are

discussed below.

Wahyudin et al. [88] proposed an SDP framework to provide guidance on how defect

prediction should be organized in a particular project and organizational context. The

38

framework includes a three-stage defect prediction model. First, the requirements are

defined to align the expectations of the software stakeholders with what can be achieved

in practice. Second, the model is constructed based on the identified variables and the

selected defect prediction method. In the final stage, the prediction model is applied to

the actual software project data and the accuracy of the model is tested. An initial

empirical evaluation of the framework was conducted based on the findings of the 12

studies in the literature, although no experiments were conducted for the implementation

of the framework.

Song et al. [14] proposed a framework that includes schema evaluation and defect

prediction components. The first component examines prediction performances by

applying learning schemes on historical datasets, and the second component constructs a

prediction model that uses the high-performance schema and applies it to the actual

dataset. The performances of the experiments performed on the simulation data and

NASA dataset were compared according to the AUC values, the framework was reported

to be efficient but different schemes may be required for different data types.

Meta-learning is also used in the literature for algorithm selection and recommendation

as an alternative approach, which aims to learn the behavior of the classifiers and

determines the dataset features that contribute to better performance. According to the

results of the experiments performed on the PROMISE datasets for the ñmeta-learning

frameworkò [89], it was reported that algorithms with better defect prediction

performance were recommended successfully. The findings of this study are important

for the literature, as its authors reported that researchers should focus on improving

algorithm recommendation rather than trying to build more robust SDP models for

different contexts. In addition, Porto et al. [90] proposed a meta-learning approach to

automatically select and recommend the most suitable cross project defect prediction

method. They evaluated their meta-learning solution on 15 open-source software projects.

According to the results, the proposed solution can learn from previous experiences and

recommend suitable methods dynamically, however, there was a minor loss in the

prediction performance compared to the base methods.

39

Another approach that has attracted a lot of attention in recent years is the transfer learning

method [91]. When the target domain has a limited amount of data, transfer learning uses

the source domain information for model learning in the target domain. Therefore, it is

considered a useful approach for cross-company software defect prediction, and in cases

when different distributions of the training and testing datasets exist [92,93].

Rathore and Kumar [94] presented a recommendation system that facilitates the selection

of the appropriate technique(s) to build an SDP model, addressing the various

characteristics of the defect data as well as the appropriateness of both machine learning-

based and statistical techniques. In this context, they made a review of the literature to

reveal the features that should be evaluated, after that, they created various decision rules

according to the evaluation of these features and presented a decision tree-based

recommendation system. The system was evaluated with several case studies, and it is

reported that it provided useful hints in choosing SDP techniques.

3.3. SDP Studies Using MCDA

In the field of SDP, there are a couple of MCDA studies in the literature. Balogun et al.

[95] evaluated the performance of various machine learning approaches by using Analytic

Network Process (ANP). Peng et al. [96] focused on comparing the performance of

several ensemble methods through the application of (Analytic Hierarchy Process) AHP,

where Wu [97] presented an Analytic Hierarchy Model (AHM) to select the best

algorithm for high-efficiency clustering in SDP. In addition, Kou et al. [98] applied

feature selection and classifier evaluation in the context of SDP by using different MCDA

methods such as ELECTRE, PROMETHEE and TOPSIS.

All of the studies above focus on the comparison of various machine learning based

classification methods with performance measurements using data from NASA Metrics

Data Program (MDP) published in PROMISE repository. Overall, these studies report a

positive effect of applying MCDA methodologies in assessing the predictive performance

of different classifiers. In addition, it is important to know that the experimental results

using different performance measures over different project data on NASA MDP may be

40

different from each other. Therefore, these studies are very valuable to evaluate the

performance of different classification methods to be used in other software projects with

context information similar to a project in NASA MDP.

3.4. Defect Prediction in Early Phases ï State of the Art and Benefits of ESDP

A systematic mapping and systematic literature review study [15] was conducted as a

basis for this thesis. To ensure transparency, we have published the entire repository of

the primary studies and results of the study online at [99]. We identified the primary

studies with the prefix 'S' as an abbreviation for the óSourceô term. The mapping table for

the source IDs of the primary studies and the corresponding reference is given in

Appendix-1.

While constructing the review process, the guidelines and protocols proposed by both

Petersen et al. [22] and Kitchenham et al. [23] were followed. It is important to note that

Petersen [100] and Idri et al. [101] also adopted the same methodology for conducting

systematic mapping and review study. The protocol of our systematic study is shown in

Figure 3.1.

Figure 3.1. Research protocol for systematic mapping and literature review

The objective for this study was to obtain a general view of the characteristics and

usefulness of ESDP models reported in scientific literature. The authors searched for the

41

studies reported between 2000 and 2016. A total of 52 studies were reviewed and

analyzed with regard to the trend and demographics, maturity of state-of-research, in-

depth characteristics (datasets used, SDLC phases, software metrics, prediction methods,

contextual information), prediction performance evaluation and benefits of ESDP

models. A more detailed classification scheme of the SLR is given in Table 3.1.

Table 3.1. Classification scheme

Research

Question

Property Possible Values (M)ultiple/

(S)ingle

RQ1.1 Dataset Type Public, Private M

RQ1.2 SDLC Phase Requirement, Design, Coding, Testing M

RQ1.3 Software Entity Product, Process, Resource M

RQ1.4 Attributes Associated

with Product Entity

Size, Structure M

Attributes Associated

with Process Entity

Effort, Stability, Process Maturity,

Number of Defects, Adequacy, Time

M

Attributes Associated

with Resource Entity

Project, Human M

RQ1.5 Software Metrics Full list is given in Table 3.3. M

RQ1.6 Prediction Method Bayesian Network, Fuzzy Logic, Machine

Learning, Statistical

M

RQ1.7 Contextual

Parameters

Commercial, Criticality, Development

Methodology, Domain, Programming

Language, Quality Expectancy, Size,

System Type

M

RQ2.1 Performance

Evaluation Methods

Categorical, Continuous S

Performance

Evaluation Measures

ROC, AUC, PD (Recall), PF, Precision,

Accuracy, F-measure, error measures,

goodness-of-fit, ranking results, accuracy,

difference between expected and observed

M

RQ2.2 Prediction

Performance Values

Performance values based on mostly

reported measures such as AUC or MMRE

M

RQ2.3 Benefits Full list is given in Table 3.5. M

42

As seen in Table 3.1, the first column represents the research questions that are relevant

to each property in the classification scheme listed in the second column. The set of all

possible values for each property is given in the third column. The fourth column indicates

if a property can have multiple values. For example, a study may have used more than

one prediction method; therefore, multiple possible values regarding prediction method

category will be marked in this case. The explanation for each property and related

possible values are given below.

¶ ñDataset typeò refers to the access the data used in the study is whether public or

private. Neither dataset, defect data nor source code is available for ñprivateò

datasets. It is therefore not definite if the study is reproducible. It is worth to note

that if the study did not mention the availability of dataset, it was categorized as

private. On the other hand, in ñPublicò datasets, the metrics and the defect data

are publicly available (e.g., PROMISE Data Repository), therefore, the study

using public datasets is considered reproducible.

¶ ñSDLC phaseò states the software development life cycle stage that originates the

metrics for the prediction model. In other words, this property explains the phase

in which the inputs needed for the prediction model are obtained. The phases were

categorized as Requirement, Design, Coding, and Testing. Together with the

phase information, it would be beneficial to report the software development

method used in the studies; however, only a few papers [S1, S5, S13, S37] clearly

expressed the development method used.

¶ According to [54], as the first rule for performing software measurement activity,

it is crucial to identify the entities and attributes of the measure. Therefore, based

on definitions of Fenton and Biemanôs classifying software measures [54] and

measurable product and process attributes of Florak et al. [102], we include

ñSoftware Entityò and ñAttributes Associated with Each Entityò to describe the

type of the entities and their related attributes, respectively. Some of these

attributes are highly relevant with software metrics used as inputs to the ESDP

models. During the review of the papers included in this systematic review, those

attributes and metrics were progressively added to the classification scheme.

¶ ñPrediction Methodò expresses the specific method used in the study regarding

the building of the prediction model. Examples of prediction methods include

43

machine learning, fuzzy logic based, Bayesian Network based, statistical based

etc.

¶ ñContextual Parametersò are required to obtain more detail about the datasets used

in prediction studies. We adopted some of the contextual characteristics from [19]

and [103]. Examples of contextual parameters include domain, programming

language, and size of the software, development methodology used in the project

life cycle etc.

¶ ñPerformance Evaluation Methods and Measuresò are necessary for assessing the

success of the prediction model. According to the classification of Hall et al. [8],

defect prediction studies may report their results via categorical or continuous

dependent variables.

¶ ñBenefitsò were categorized with regard to the mostly reported qualitative benefits

in the primary studies. They were gathered through the iterative cycles of the full-

text reading and categorized with regard to similar phrases which primary studies

reported as a benefit or advantage.

3.4.1. RQ 1: What are the characteristics of ESDP models?

3.4.1.1. RQ1.1 Which types of datasets are used for performing the prediction?

The distribution of the dataset types given in Figure 3.2. Public datasets (50%) were

preferred since they are open to access. Public datasets includes: 1) NASA Metrics Data

Program (MDP) which is located in PROMISE repository [58], 2) qualitative and

quantitative data about 31 projects that were published in [20], and 3) raw data published

in [S16]. Private datasets were also used (with 48%) in ESDP studies, which belonged to

industrial companies or individuals. One study did not use any type of dataset as it is not

a case study, it only proposes the defect prediction model [S17]. Moreover, in order to

see the change of interest to public or private dataset types, the cumulative distribution

over years is presented in Figure 3.3. It was obtained from the number of dataset types

used in the studies by summing them over the years.

44

Figure 3.2. Distribution of dataset types

Figure 3.3. Cumulative number of dataset types per year

3.4.1.2. RQ1.2 What are the development phases that originate metrics for the

prediction models?

The individual numbers of SDLC phases included in prediction models are provided in

Figure 3.4. While three studies used only requirement phase-based data, eleven studies

preferred only design phase-based data. Six studies focused on requirement, design and

coding phase-based data together; and, six studies included only design and coding phase-

based data for early defect prediction.

45

Figure 3.4. Individual distribution of SDLC phases

The cumulative percentages of the SDLC phases associated with early prediction studies

can be seen in Figure 3.5. Overall, 33 studies covered requirement phase-based data for

the early prediction. Besides, 39 studies included design phase-based data in the

prediction methods. Design phase-based data was mostly preferred (32%) while

constructing early prediction models. In addition, it is important to note that there is a

high adoption of requirement phase-based data (27%) in order to provide earlier

prediction results. Since studies that used requirement and design phase-based data

mostly covered coding phase-based data too; its percentage was about 29%.

46

Figure 3.5. Cumulative distribution of the SDLC phases

3.4.1.3. RQ1.3 What are the entities that originate metrics for the prediction

models?

The software entities subject to prediction studies were elicited from the software metrics

used in the studies. Twenty-seven studies used only product entity-based data, and three

studies used metrics of process entity. Six studies used both product and process entity-

based data to gather metrics, where only two studies used metrics from process and

resource entities together. Fourteen studies used metrics that were related to all entities.

The individual distribution of the entities among all studies is shown in Figure 3.6.

Figure 3.6. Individual distribution of software entities

47

Overall, 47 studies (53% of total) covered product entity related metrics to collect data

for early defect prediction. Twenty-five studies (29%) included process entity-based data

and 16 studies (18%) covered resource related data. The cumulative distribution of the

software entities used in studies can be seen in Figure 3.7. It can be seen that product was

the most common to measure since it is more concrete and there is a room for further

studies that address process and resource entities in building ESDP models.

Figure 3.7. Cumulative distribution of software entities

3.4.1.4. RQ1.4 What are the attributes of each entity, which originate metrics for the

prediction models?

Software attributes associated with each software entity were classified based on [54,102]

as shown in Table 3.2. Accordingly, product structure, size, process effort and human

resource characteristics were the most included attributes in the prediction models.

3.4.1.5. RQ1.5 What are the software metrics that are used in the prediction models?

Software metrics associated with each software attribute have been classified based on

[54,102] as shown in Table 3.3. According to the table, lines of code (LOC) or number

of use cases, McCabeôs and Halsteadôs complexity metrics, requirements stability and

staff experience were the most used metrics in ESDP models.

48

Table 3.2. Software attributes and referencing studies

Software

entity

Software

attribute

Explanation of the

attribute

References # of

Refs

Product Size Identifies the magnitude

of the work products

such as LOC or number

of use cases.

S1, S2, S50, S33, S29, S37, S15, S21,

S28, S49, S32, S11, S12, S3, S9, S4,

S47, S35, S27, S13, S42, S34, S20,

S10, S25, S16, S19, S36, S41

29

Structure Covers the flow of the

work products such as

Complexity, Length,

Coupling, Cohesion,

Modularity or Reuse.

S2, S51, S52, S50, S33, S29, S21, S17,

S28, S8, S18, S38, S32, S11, S12, S3,

S9, S4, S47, S14, S40, S35, S42, S24,

S34, S43, S20, S44, S30, S6, S39, S22,

S7, S48, S25, S16, S36, S19, S45

39

Process Effort Covers the measures

related to the effort of a

process activity.

S1, S2, S5, S37, S23, S31, S26, S8,

S32, S40, S35, S13, S46, S24, S34,

S43, S30, S7, S10, S48

20

Time Covers the measures

related to the time for a

process activity.

S15, S31, S41 3

Stability States the changefulness

of a process artifact.

S2, S37, S17, S8, S49, S32, S35, S27,

S24, S34, S43, S30, S7, S10, S48

15

Process

Maturity

States the maturity of

the organization about

the process activities.

S2, S37, S8, S32, S40, S35, S24, S34,

S30, S7

10

Number of

Defects

Specifies the number of

defects found during a

process activity.

S1, S37, S15, S17, S8, S49, S35, S27,

S13, S24, S30, S7, S10, S48

14

Adequacy Represents the quality

or completeness of a

process artifact.

S2, S37, S49, S40, S35, S34, S43, S7,

S41

9

Resource Project

characteristics

Covers the magnitude or

quality of the input

elements for software

production, such as

number of stakeholders,

development language.

S37, S15, S26, S49, S35, S46, S41 7

Human

characteristics

Covers the personnel or

teamôs quality for the

activities, such as

experience, motivation.

S2, S37, S15, S26, S49, S32, S40, S35,

S27, S46, S34, S43, S30, S7, S10, S41

16

49

Table 3.3. Software metrics and referencing studies

Software

entity

Software

attribute

Software metrics References # of

Refs

Product Size LOC or number of use cases S2, S37, S15, S21, S49, S32,

S47, S35, S27, S13, S42, S34,

S10, S19, S41, S16, S36,

17

Size of artifact S1, S13 2

Size metrics from NASA projects

(Halstead size metrics)

S50, S33, S21, S28, S11, S12,

S3, S9, S4, S25

10

Requirement metrics: action,

conditional, continuance,

imperative, incomplete, option, risk

level, source, weak phrase

S33, S28, S11, S12, S3, S9, S4,

S20, S25

9

Structure McCabe Metrics (Complexity etc.)

Halstead Metrics (total number of

operators, operands etc.)

S52, S21, S17, S47, S42, S44,

S30, S39, S22, S7, S48, S19

12

Object-oriented Metrics

(Complexity, Length, Coupling,

Cohesion, Modularity, Reuse)

Design metrics from UML [55]

S51, S50, S29, S18, S14, S6,

S16, S36, S19

9

Data flow complexity, cyclomatic

complexity

S8, S24, S43 3

Requirements complexity,

Complexity of new functionality

S2, S37, S32, S35, S34, S48 6

Program dependencies S38 1

Design metrics: edge count, node

count, branch count, decision count,

multiple condition count and

condition count, densities,

complexities

S20 1

Architectural design metrics to

quantify SDL (Specification and

Description Language) blocks

S45 1

Process Effort Design, review or development

effort measured in person hour

S1, S5, S23, S37, S31, S40, S35,

S13, S43

9

Creation effort, review effort S26, S46 2

Design review effectiveness S30, S7 2

Review, inspection and walkthrough

(RIW)

S2, S8, S32, S24, S34, S30, S7,

S10, S48

9

Time Total months of the project duration S15, S31, S41 3

50

Stability Requirements stability (RS),

requirement change request

S2, S37, S17, S8, S32, S35, S27,

S24, S34, S43, S30, S7, S10,

S48

14

Process

Maturity

Capability Maturity Model

Integration (CMMI) Level

S2, S37, S8, S32, S40, S35, S24,

S34, S30, S7,

10

Number of

Defects

Number of defects from review S1, S37, S15, S35, S13 5

Requirement fault density, design

defect density, fault days number,

code defect density

S15, S17, S8, S27, S24, S10,

S48,

7

Adequacy Analysis, design, review quality S37, S40, S35, S43 4

Quality of documented test cases S35, S7, S41 3

Defined process followed S2, S32, S34, S35, S37 5

Resource Project

characteristics

Number of stakeholders/members S15, S49, S41 3

Development language S37, S15 2

Configuration management S37, S35, S41 3

Project planning S37, S35 2

Scale of distributed communication S37, S35 2

Vendor management S37, S35 2

DBMS type, development solution,

industry area

S15, S41 2

Techno complexity S26, S49, S46 3

Urgency S46 1

Novelty to developer S49 1

Human

characteristics

Staff experience S2, S37, S32, S40, S35, S27,

S34, S43, S7, S10

10

Staff motivation S37, S35 2

Programmer capability S37, S35, S30, S7 4

Staff training quality S37, S35 2

Internal communication/interaction S37, S35 2

Productivity S15 1

Practitioners level S26, S46 2

Stakeholder involvement S2, S32, S34 3

People dependence S41 1

3.4.1.6. RQ1.6 What types of methods are used to build the prediction models?

Figure 3.8 shows the distribution of the prediction methods used for early defect

prediction in the studies. It can be seen that machine learning-based methods were the

most frequently used (with 39%). Machine learning methods included support vector

machines, artificial neural networks, genetic algorithms, K-means clustering, decision

51

trees and so on. Fuzzy logic-based methods (28%) were widely preferred since fuzzy

logic is appropriate for handling qualitative data gathered from early phases. In addition,

Bayesian network-based methods were preferred (with 13%) thanks to its capability to

measure abstract data, which exists in early phases. Statistical methods, which are mostly

based on regression, were used for early prediction with the percentage of 20%.

Figure 3.8. Distribution of prediction methods

3.4.1.7. RQ1.7 What are the contextual parameters reported in the prediction

models?

The contextual parameters were gathered according to some references, such as [19] and

[103]. It was investigated whether the studies reported the contextual parameters of the

dataset explicitly or not. However, it was also possible for a study to address the

contextual parameters in an implicit way. For example, if a study used NASA MDP data

from PROMISE repository for early defect prediction, its contextual parameters can be

inferred since the dataset is public to access. Besides, the contextual parameters about the

NASA MDP dataset are known through the studies that reported this information

explicitly, such as [S21, S44]. Overall, 14 studies [S3, S4, S9, S11, S12, S18, S20, S21,

S22, S25, S28, S33, S42, S44] used NASA MDP dataset. In addition, some explicit

contextual parameters were reported for public dataset published by Fenton et al. [S37],

where 10 studies [S2, S7, S10, S27, S30, S32, S34, S35, S37, S43] used this dataset.

52

Lastly, a public raw data was published in [S16] and [S36] also used this dataset in their

study.

Reported contextual parameters of these public datasets are given in Table 3.4, which

include business domain, product size (as KLOC), programming language, development

methodology, and effort.

Table 3.4. Context parameters of the public datasets

Public Dataset

of

Studies

Use the

Dataset

Business

Domain

Size

(KLOC)

Programming

Language

Development

Methodology

Development

Effort

NASA MDP [58] 14 X X X

Fenton dataset

[20]
10 X X X X X

Data published in

Cartwright and

Shepperd [S16]

2 X X X X

Aside from these public datasets, the contextual parameters reported in 18 studies out of

25 studies that used private dataset were extracted. Figure 3.9 shows those parameters

and the distribution of numbers among the studies. It is seen from the figure that the most

reported contextual parameter (with 25%) was domain information of the projects. Also,

technical information of the software product was given by reporting programming

language (19%), size of the product (16%), and the type of the system (14%). In addition

to that, it was mentioned whether the software was commercial or not (14%). Some other

information about the quality requirements or processes was reported, such as criticality

or quality expectancy from the system, and development methodologies adopted during

the life cycle of the software. Unfortunately, 10 studies (out of 52) did not address any

information regarding the context of the data used. It is a disadvantage that studies

reporting the context were relatively few, which makes it difficult to repeat the study and

compare the model performances based on contextual similarity.

53

Figure 3.9. Categories of contextual parameters reported in 18 primary studies

3.4.1.8. Observations on review by characteristics of models

¶ Increased interest in public datasets is critical in terms of questioning the

reproducibility of the studies. It is good to see that public datasets have gained

interest through the years.

¶ SDLC phase information is important on ESDP studies, since we define "early"

studies as the ones that built the prediction models before coding phase has started,

i.e. in requirement or design stages. Approximately 60% of the primary studies

focus on requirement or design phases to construct their prediction models, which

indicates the importance of these phases in ESDP.

¶ It was observed that metric data based on product entity is mostly preferred in

building ESDP models in the studies, while metric data based on process and

resource entities follow that category.

¶ Most interested attributes are product size and structure, process effort, and human

resource characteristics.

¶ Most commonly used metrics can be listed as follows: metrics that measure the

length of the software product (i.e. LOC or number of use cases), complexity

54

related metrics (i.e. McCabe or Halstead metrics), effort for review activities,

stability of requirements, maturity of the organization (i.e. CMMI level), and

experience of the staff.

¶ On the side of prediction methods used in the models, machine learning and fuzzy

logic methods are the most frequently chosen ones. It is worth to note that, fuzzy

rule-based models are relatively suitable to model the vague, incomplete, or

qualitative data gathered from the early phases. That is why fuzzy logic-based

approaches are preferred frequently in building ESDP models.

¶ It can be said that contextual parameters have importance in the early phases of

software development, since qualitative data is commonly used to construct the

prediction models. Context information may undertake the task of guiding and

can be helpful to build simple and effective models.

3.4.2. RQ 2. Are models of ESDP successful and beneficial?

3.4.2.1. RQ2.1 Which methods and measures are used for evaluating the

performance of the models?

Performance evaluation methods of the prediction results varied according to the

dependent variable of the model, which in general were defectiveness and number of

defects, corresponding to categorical and continuous performance evaluation,

respectively. The distributions related to performance evaluation methods were given in

Figure 3.10. It can be seen that more than half of the studies used continuous performance

evaluation methods, while nearly one-quarter of them used categorical methods.

Unfortunately, nine studies (17%) did not evaluate the performance of the prediction

models.

55

Figure 3.10. Distribution of the prediction performance methods

As mentioned above, categorical studies focused to predict whether the specific part of

the software was defect-prone or not. Papers reported the prediction performance using

ROC (Receiver Operating Characteristic), AUC (Area Under Curve), Probability of

Detection (PD, Recall), Probability of False Alarms (PF), Precision, Accuracy, and F-

measure. Continuous studies, which predicted the number of the defects, reported the

prediction performance using various measures. Most of the measures reported by

continuous studies were related to error measures, goodness-of-fit, ranking results,

accuracy, or difference between expected and observed results. The distributions related

to performance evaluation measures for categorical and continuous models were given in

Figure 3.11 and Figure 3.12, respectively.

56

Figure 3.11. Performance evaluation measures in categorical models

Figure 3.12. Performance evaluation measures in continuous models

3.4.2.2. RQ2.2 What are the performance values of the models based on the included

SDLC phases that originate metrics for prediction?

Performance data of the prediction was extracted for every individual ESDP model given

in the papers. We collected the performance values for each model presented in the related

paper and synthesized the values with regard to phase information of the model. Note that

we used the notation ñ<phase> (n = <number of models>)ò in the tables reported in this

section, to be able to provide the number of models presented in the papers with regard

to the phase information of the constructed model. It is important to say that there is a

one-to-many relationship between a primary study and the number of models it presents,

57

and ónô values belong to the sum of the individual models presented in each study with

regard to a specific phase.

Most of the categorical studies reported AUC or Precision, Recall, and F-measure,

therefore we analyzed the results through these measures. Also, we provided f-measure

where it was not reported by the paper directly, as it can be calculated from precision and

recall. In order to interpret performance evaluation results, we used box-plots that are

beneficial to show the differences between populations visually as they do not make

assumptions about the distribution of the data [8]. Therefore, we provided the categorical

performance results with regard to phase information by using two different box-plot

graphics, in order to observe its likely effects on prediction performance. Figure 3.13

shows the results based on AUC values; while Figure 3.14 shows the results based on

precision, recall, and f-measure values that were provided. It is very important to see that

models based on requirement and design phase metrics were very successful based on

both AUC and f-measure values, which were pretty close to 1.0.

58

Figure 3.13. Performance results (AUC) regarding phase in categorical studies

59

Figure 3.14. Performance results (f-measure, precision and recall) regarding phase in

categorical studies

For the continuous studies, the prediction performance results were reported in a variety

of measures, which makes it difficult to convert the results into a common measure.

Mostly preferred performance measures reported in continuous studies were based on

error measures, which are Mean Magnitude of Relative Error (MMRE), Root Mean

Square Error (RMSE), Balanced Mean Magnitude of Relative Error (BMMRE), and

Mean Absolute Error (MAE). MMRE results with regard to phase information were

provided in Figure 3.15, which were reported in 10 studies [S7, S10, S15, S27, S30, S34,

S37, S43, S48, and S49]. Except an outlier value reported in [S37], which belonged to a

Bayesian network-based model built with data from all phases, it can be seen that most

MMRE results were smaller than 0.5. In addition, it is very important to see that three

models including only requirement phase-based data [S10, S15, S49] resulted in an

MMRE value of approximately 0.28, which was smaller in comparison to the error value

60

of the models based on requirement and coding phase data in [S27]. Also, models based

on requirement and design phase-based data in [S48] and design phase-based data in

[S15] reported good performance values, which were MMRE = 0.098 and MMRE = 0.2,

respectively. Besides, it is important to note that these models were based on different

kinds of prediction methods (i.e. Bayesian networks, fuzzy rule-based and statistical

techniques), which might have had an effect on the performance of the prediction apart

from the phase information. Still, despite the differences in prediction methods, ESDP

models demonstrated desired (high) performance.

Figure 3.15. Performance results (MMRE) regarding phase in continuous studies

61

Moreover, R2 values were also preferred among continuous studies. We provide those

results with regard to the phase information in Figure 3.16. It can be seen that the most

successful model [S13] was built with integrating data from the requirement, design,

coding, and testing phases together (with R2 = 0.989). Two studies [S10] and [S27]

presented an ESDP model based on data only from the requirement phase with the

performance values very close to 1.0, which were R2 = 0.971 and R2 = 0.951, respectively.

These two distinctive studies demonstrate the power of requirements stage in the

performance of ESDP models.

* Retrieved from [S10]

Figure 3.16. Goodness-of-fit (R2) values reported in continuous studies

3.4.2.3. RQ2.3 What are the benefits of early defect prediction as reported in the

studies?

Only few of the studies, i.e. [S37] and [S49], both using Bayesian Network models,

reported comprehensive benefits of the ESDP. In [S37], it was indicated that an obvious

benefit of a Bayesian Network was its capability to organize a range of decision analysis

and risk assessment modeling, which were conceivably important for software project

managers. In addition, decision support capability was explained with example scenarios,

in which the model parameters were changing regarding to the values of others, especially

when the resource constraints made some of them impossible to increase. In [S49], the

usability of the model was evaluated by using data (e.g. size of artifacts, number of

defects) collected for five historical projects. Knowledge of seven domain experts was

gathered by using questionnaires in order to build the prediction model, which required

112 min per expert. The results indicated that the model was useful for quality assurance

62

(QA) planning by identifying high-risk projects. Moreover, this also applied for QA

controlling by providing better prediction for the number of defects than models using

only measurement data. Consequently, it was stated that the proposed hybrid prediction

model would be used in the software requirements phase of the company to support QA

activities.

Aside from these two studies, most of the other studies concluded with a couple of general

findings, which represented the benefits of early models verbally. We have categorized

those benefits with regard to the mostly reported benefits in the primary studies. Table

3.5 presents the benefits of early software defect prediction and highlight the main focuses

that the ESDP models can be used advantageously. It is worth noting that; for better

clarification of this RQ, we performed "reciprocal translational analysis" reported in

Dixon-Woods et al. [104]. This technique is helpful in order to analyze and synthesize

the qualitative data and translate the main benefits reported across primary studies to the

headings to identify the similarities between them.

Table 3.5. Reported benefits of early software defect prediction

Benefit

ID

Benefits Focus Reported Benefits Primary Studies # of

Studies

B1 Useful for software

practitioners in

requirement phase

ESDP models can be beneficial to software

engineers, managers and researchers for defect

prediction in the requirement phase of software

development.

[S10, S49] 2

B2 Useful for software

practitioners in

design phase

Experiments resulted in the fact that design

metrics can be used accurately as software

defect indicator in early phases of software

development.

[S16, S19, S22,

S29, S36, S44,

S51, S52]

8

B3 Supports making

best design

decisions with the

help of design

phase metrics

Design phase-based metrics are good predictors

of software defects, thus they support for

selecting the suitable design among the

available different design choices by avoiding

defect-prone areas of the software.

[S6, S14, S38] 3

B4 Improved and

effective resource

planning

ESDP provides a basis for effective resource

planning and utilization by allocating the

necessary resources (human, computer of

infrastructure) optimally.

[S2, S3, S4, S5, S7,

S8, S9, S11, S15,

S18, S20, S23, S24,

S25, S28, S30, S32,

S43, S46, S48]

20

63

B5 Improved testing

focus and effective

testing effort

planning

ESDP models can be used for prioritizing

software testing activities effectively with a

specific focus on defective parts of the software

in a comprehensive way, hence enable

developers, testers or verification experts to

concentrate their time and resources on the

problematic areas.

[S5, S9, S10, S11,

S12, S13, S18, S19,

S23, S25, S28, S31,

S33, S35, S38, S41,

S43, S46, S47]

19

B6 Developing cost

effective software

and providing cost

reduction

Identifying defective parts of the software early

in the SDLC may lead to reduce cost by better

planning and management of the project. Early

identification of cost overruns and making

corrective actions enable the software teams for

developing cost effective software.

[S2, S7, S8, S9,

S10, S18, S24, S30,

S32, S42, S45]

11

B7 Useful in

optimizing

software schedule

Early prediction of defects supports software

managers through improved scheduling and

early identification of schedule mismatch.

[S9, S10, S30, S32,

S35]

5

B8 Helpful for

developing more

reliable software

Predicting defects early in the SDLC can be

used to achieve high software reliability by

making effective strategies for improving the

reliability of the whole system and deciding the

necessary amount of corrective actions is

achieved or not in order to achieve target

software reliability.

[S2, S6, S7, S8,

S12, S14, S17, S24,

S32, S35, S47]

11

B9 Effective project

planning and

management

Early life cycle prediction can play an

important role in project management by

supporting software quality engineering

through highlighting the quality needs earlier.

Involving early phase risk mitigation and

planning frequent review activities may also

provide better software project management.

[S5, S15, S23, S31,

S33, S35, S40,

S51]

8

B10 Effective decision-

support

ESDP provides effective decision-support and

enables to make correct decisions regarding

rework, testing and release planning. Software

developer may easily detect the defective

artifacts and may make correct decisions

accordingly.

[S7, S20, S23, S30,

S37, S40]

6

B11 Trade-off analysis ESDP models provide to make effective trade-

off analysis during early phases of software

development.

[S20, S37] 2

B12 Improved software

process control

Early prediction is used to improve software

process control by early identification of

software development process issues, therefore

will be helpful for taking corrective actions

through process improvement.

[S12, S30, S35] 3

64

3.4.2.4. Observations on review by performance of models

Regarding performance evaluation methods, most studies choose to predict the number

of defects that exist in the software (i.e. continuous studies); hence they prefer to report

performances based on measures related to error-rate.

We extracted performance values of continues studies with regard to MMRE and R2

values. It is very important to see that studies include only requirement phase-based data,

only design phase-based data, and requirement/design phase-based data together reported

good performance values, in terms of MMRE values smaller than 0.28. We can also say

that two studies [S10] and [S27] presented models based on data only from the

requirement phase with R2 = 0.971 and R2 = 0.951, respectively, which may indicate the

power of requirement phase-based data for ESDP.

When we look at the phase-based performance values of the categorical models, we see

that model types established from the early-stage knowledge are successful. One of the

most important finding of this systematic review is that models based on requirement and

design phase metrics are very successful based on both AUC and f-measure values, which

are pretty close to 1.0.

The main benefits of the ESDP as reported in the studies can be listed under several

topics:

¶ It can be beneficial to software project managers by supporting early planning and

management of project with higher quality in requirement or design phases of

software development.

¶ It may provide a basis for effective resource planning by allocating the necessary

resources optimally.

¶ It can be useful for planning of testing activities effectively, reducing the testing

effort, and focusing the defective parts of the software in a comprehensive way as

defect-prone areas will be already known.

65

¶ It may be used as a decision analysis mechanism during early phases of software

development by supporting design decisions and helping the developers to select

the suitable design choice by avoiding defect-prone areas of the software.

¶ The cost of the software development could be optimized and even may be

reduced through early defect predictors.

¶ Early software defect prediction helps software managers on planning schedule

effectively.

¶ High software reliability may be achieved and guaranteed early in the SDLC, by

identifying the defective parts earlier.

¶ Predicting defects early in the software life cycle may improve software process

control with early identification of the issues in software development processes.

Consequently, early phase data can help to build more accurate models when combined

with metric data from the coding phase, and provide more benefits than software defect

predictors based only on metric data from coding and testing stages.

3.5. Software Defect Prediction in Turkey ï A Survey Study from Industry (RQ3)

A survey study was conducted to take a picture of the applications on SDP in software

companies in Turkey. Mainly, we wanted to get the opinions of people working in

different companies in the sector, and gather the needs and expectations of the industry.

The relevant survey can be accessed via the Google forms4.

3.5.1. Survey Design

The questionnaire is structured in three parts. In the first part, the title information of the

participant's company and some general information specific to the company are asked

for statistical evaluation. In this context, there are questions such as quality certificates

and activities carried out within the scope of quality management to determine the quality

management approach of the company. Finally, it is asked whether software defect

4 tinyurl.com/yc7ah7xt

66

prediction is applied in the company. The second part of the questionnaire is structured

according to the answer to this question.

If it is stated that software defect prediction is applied in the company; to understand in

detail how the defect prediction process works, the following questions are asked:

¶ How do you operate software defect prediction?

¶ For what purpose do you apply software defect prediction?

¶ At what phases of the software development life cycle do you predict defects?

¶ Which metrics do you use for software defect prediction?

¶ What approach(es) and/or tool(s) do you use to build the software defect

prediction model?

¶ What do you think are the benefits or advantages of software defect prediction

applications in your company?

¶ What do you think are the difficulties or disadvantages of software defect

prediction applications in your company?

If it is stated that there is no software defect prediction in the company; the following

questions are asked to generate recommendations to motivate the useful application of

defect prediction in software companies:

¶ Why do you think software defect prediction is not applied in your company?

¶ What do you think would be the benefits if software defect prediction was being

applied in your company?

¶ What kind of difficulties would you think if software defect prediction was being

applied in your company?

The final part of the questionnaire asks the following questions to understand the need

for guidance for software defect prediction from the early phases of SDLC:

67

¶ Do you think it would be helpful if there was a guide on how to operate the

software defect prediction process from the early phases of life cycle?

¶ Is guidance needed for choosing the defect prediction method?

¶ Is guidance needed to identify the inputs and outputs of the defect prediction

model?

¶ Is guidance needed for the creation of the defect prediction model?

¶ Is guidance needed on how to predict defects?

¶ Is guidance needed on how to evaluate defect prediction performance?

¶ What do you think, in addition to the above issues, could be included in a guideline

for software defect prediction from the early phases of software development?

3.5.2. Results

A total of 35 people participated in the survey. The data provided by the participants are

shared in Appendix-2. The most important results grouped by the research questions can

be listed as follows.

RQ 3.1. If software defect prediction is applied, how does the company operate it?

¶ 28.6% of the participants stated that software defect prediction was applied in

their companies.

¶ It was seen that 60% of the participants applied SDP to predict the number of

defects, 50% for the prediction of defective components, and 50% for determining

the severity of the defects.

¶ It is seen that defect prediction is mostly applied in the requirement analysis phase

of the software development life cycle (60%). This result is critical for addressing

early-phase information while predicting the defects. In addition, it is seen that

defect prediction is applied with a rate of 50% during the design phase. It is

understood that the coding and testing phases are preferred by 50% and 40%,

respectively.

68

¶ It is seen that process metrics are used with a rate of 90% in companies where

defect prediction is made. Also, 80% of the participants stated that they used

product metrics and 60% stated that they used resource metrics.

¶ While it is seen that statistical methods / tools are mostly preferred as an approach

to creating a prediction model (80%), it is seen that approaches based on expert

opinion are used at a rate of 40% and machine learning approaches at a rate of

20%.

RQ 3.2. If the company is applying SDP, what are the advantages or disadvantages of

applying it?

¶ The benefits / advantages reported by those who stated that defect prediction was

applied in their companies can be expressed as: predicting possible risks in

projects, its contribution on time and quality management, and controlling the

number of defects that will appear in future versions.

¶ The difficulties / disadvantages of defect prediction were stated as: the lack of

qualified human resources to apply prediction, the different dynamics of the

projects and the inability to be used by the teams, while the possibility of incorrect

prediction of the defects that may occur was reported as its disadvantage.

RQ 3.3. If the company is not applying SDP, what would be the benefits and/or

challenges in applying SDP in your company?

¶ While 37.1% of the participants stated that no prediction was made, 34.3% of

them stated that they did not know whether SDP was applied or not.

¶ In companies that do not apply SDP, time, budget and cost constraints come to

the fore, while the lack of experienced personnel and the lack of know-how on

SDP are among the reasons for not using SDP models.

¶ It was stated that if they would apply SDP in their companies, there would be an

increase in efficiency and quality in the planning of development and testing

processes, resource and time management could be made more efficiently, the

69

developed software could be produced with higher quality, thus increasing

customer satisfaction, awareness, and reusability.

¶ It was stated that in companies that do not apply SDP, if estimation were made, it

would be the most important difficulty to collect the necessary data for applying

SDP models, and there might be difficulties in building SDP models correctly.

Besides, it is thought that SDP would bring an extra cost and workload.

RQ 3.4. Is there a need for guidance on software defect prediction from the early phases

of SDLC?

¶ 89% of the participants stated that a guide would be helpful in choosing the SDP

method and determining the inputs and outputs of the model.

¶ 86% of the participants stated that there should be guidance on the building of the

model, how to apply the prediction and how to evaluate its performance.

In addition to these results, the survey contributors stated that issues such as which model

will be selected in which type of projects and/or sectors among different models, usage

and example scenarios of those models, and the benefits of the defect prediction process

to the companies can be included in the defect prediction guide.

In line with the information obtained from the literature review and the survey results, it

was seen that a decision analysis method is required for the selection of the defect

prediction method in the field of ESDP. In this direction, in the studies described in the

next section, details are given for the steps of preparation, design and implementation of

a decision analysis method that will provide a basis for the selection of the defect

prediction method suitable for the early phases.

70

4. DECISION ANALYSIS APPROACH

Up to this section, we have explored the feasibility of early phase defect prediction by

addressing the most important aspects of SDP models. Thus, it was deemed appropriate

to adopt a broad and comprehensive decision analysis approach to answer the crucial

question of this thesis: ñRQ4. How to select a method for early prediction of software

defects?ò

In this section, the steps taken in order to systematically synthesize the information

obtained as a result of the extensive literature review and to use it in the modeling of the

decision analysis approach are explained by matching the related processes with the

detailed RQs.

4.1. Design of Decision Analysis Approach

The design of the decision analysis approach can be seen in Figure 4.1. It consists of four

components: the preparation for decision analysis approach, generating the knowledge

base, modeling of the decision analysis approach and the application of the approach.

Figure 4.1. Design of the decision analysis approach

In the preparation stage for decision analysis, the literature was examined in detail as

explained in Chapter 3.4, to reveal the current state of the early software defect prediction

area. With this in mind, a list of alternatives to be compared during the decision analysis

process was identified. After, several important characteristics that will be considered for

71

the selection of the alternative SDP methods, namely the criteria, were outlined. In doing

so, an expert opinion study was prepared in order to gather opinions about the proposed

criteria and to finalize them. The overall preparation process of decision analysis

approach is given in Chapter 4.2-4.3.

The knowledge base contains all the data in a format that was derived from the previous

stage. At this stage, a base matrix is defined, which contains the values that the criteria

can take for each alternative. A second expert opinion study is conducted in order to

finalize the base matrix, as well as to evaluate the alternatives against criteria. Chapter

4.4 covers the detailed steps executed to generate and develop the knowledge base.

In Chapter 4.5, a questionnaire is presented to collect the preferences of the stakeholders

to guide the selection in line with the criteria and alternatives.

For modeling the decision analysis approach, all the information gathered in the

knowledge base were synthesized. In this manner, a two-phase decision analysis approach

that combines decision tree and MCDA methodologies is presented to form the decision

analysis process for SDP method selection in the early SDLC phases. The decision

analysis process is explained in detail in Chapter 4.6.

For the application of the decision analysis, the characteristics of the example dataset and

the stakeholdersô requirements are elicited through the proposed questionnaire. This

allows the stakeholders to select the values of various attributes regarding their needs in

the context of their software project and related defect dataset. In Chapter 5, the

application of the decision analysis approach through several case studies were

demonstrated.

4.2. What are the alternative methods for building ESDP models? (RQ4.1)

Based on our systematic literature review study on ESDP [15] and by considering other

systematic reviews on SDP [8,10,82,83,105], several prediction methods were identified

72

to be considered as alternatives. In Table 4.1, these alternative methods and their basic

characteristics were listed. The references to the primary studies were also provided in

the rightmost column, which were helpful in retrieving the characteristics of the methods.

Table 4.1. Characteristics of software defect prediction methods

Method Approach to

construct the

SDP model

Purpose of

use

Type of

output

Dataset size Primary Studies in

[15] c

ANN Data

Dependent

Classification,

Regression

Categorical,

Numerical

Medium / Large /

Very Large

S5, S23, S25, S29,

S35, S36

BBN Can Address

Both

Classification,

Regressiona

Categorical,

Numericala

No data requiredb,

Small / Medium /

Large

S1, S14, S37, S40,

S43, S46, S49

DT Data

Dependent

Classification,

Regressiona

Categorical,

Numericala

Large S9, S33, S44, S52

FIS Based on

Human

Judgement

Classification,

Regressiona

Categorical,

Numericala

No data requiredb S7, S10, S12, S18,

S27, S30, S32, S34,

S48

LinR Data

Dependent

Regression Numerical Small / Medium /

Large

S16, S47, S50

LogR Data

Dependent

Classification Categorical Small / Medium /

Large

S19, S36, S51

NB Data

Dependent

Classification Categorical Small / Medium S20, S21, S22, S42,

S44

SVM Data

Dependent

Classification,

Regressiona

Categorical,

Numericala

Medium / Large S38, S45

a. May depend on the implementation of the algorithm

b. Can be constructed independent from data

c. Full references of primary studies can be obtained

4.3. What are the criteria to consider when selecting a method for ESDP? (RQ4.2)

4.3.1. Initially Defined Criteria

The criteria that should be considered in the context of ESDP for the evaluation of the

identified alternatives were determined and grouped under five main headings. The

relevant criteria were defined roughly before the preparation stage of the decision

analysis, which were first published as a conference paper [33], then matured and updated

with various feedbacks received from the experts (e.g. in conference peer-reviews or

expert opinion study described in the next sub-section).

73

To put it concretely, basic characteristics of the prediction methods have been considered

for the determination and grouping of criteria, as well as the information required to build

an SDP model in the early phases, such as data characteristics, data quality and the context

information of the project. These criteria have also been mentioned in literature in various

ways [8,37,38,41]. The grouping for the criteria is given as follows:

¶ Model Construction (MC): The main purpose and model constructing approach

are discussed under this group.

¶ Data Characteristics (DCh): There are several characteristics which are crucial to

address the constraints of the data that will be used for building the SDP model.

¶ Data Quality (DQ): The quality characteristics of the data to be used to construct

the SDP model are discussed under this group.

¶ Method Characteristics (MCh): The characteristics of the methods to be used to

construct the SDP model are discussed under this group.

¶ Project Context (PC): The factors related to the context information of the project

subject to SDP are discussed under this group.

Next, the definitions of the criteria under each grouping are given below.

Model Construction

¶ Main purpose of use: The purpose of an SDP model can be predicting the number

of defects or classifying the software as defective / defect-free (i.e. prediction

versus classification) [106]. This information is said to be distinguishable for both

the construction of the model and for the performance evaluation of the resulting

model [8].

¶ Approach to construct the model: To construct the SDP model, we can use

machine learning based methods that learn from historical data and make

predictions on new data, or we can prepare a model that is independent from data

with the help of expert judgement [106]. It is necessary to evaluate the modeling

technique since different techniques may produce different results under varying

conditions [8].

74

Data Characteristics

¶ Dataset size: Dataset size is the size of the dataset that will be used for training

the model. Small (number of examples (n) Ò 500), Medium (500 < n < 1000),

Large (1000 Ò n < 10000), Very Large (n Ó 10000) [81,94,107].

¶ Type of input / output data: Type of data can be categorical or numerical [54].

Data Quality

¶ Causality: Causality is the degree that attributes are dependent when the value of

one attribute influences the other [21].

¶ Uncertainty: Uncertainty is the degree to which data is inaccurate, imprecise,

untrusted or unknown [108].

¶ Missing data: Missing data is the values that are empty or left blank in the dataset

[109].

¶ Outlier: Outlier is the degree to which the data do not meet with the general

behavior of the dataset [110].

Method Characteristics

¶ Interpretability: Interpretability is the degree of which the user can understand the

cause of any result (output) [37,111].

¶ Complexity: Complexity is the degree to which the method is complicated or

complex in design [37].

¶ Performance: Performance is the degree of which the method performs well in

general [112].

¶ Speed: Speed is the degree of costs associated with generating and using the

method [37].

¶ Maintainability: Maintainability is the degree of which the method is easy to

manage in time [41].

75

Project Context

¶ Size of the artifact: Size metric of the artifact subject to SDP can be used as a

coefficient (normalizer) if the case is predicting the number of defects [21]. It is

important to note that, the size of the artifact is defined as an indicator of the

project rather than an indicator of the dataset.

¶ Development methodology: Development methodology is the approach used

throughout the project's life cycle [15].

¶ Development phase: Development phase information can be considered as the

phase information (requirements analysis, design, coding etc.) when the SDP

model is constructed [21].

¶ Domain: Domain information is about the business domain of the project [15].

4.3.2. Expert Opinion Study on Identifying and Ranking the Criteria

To select the most suitable method for early software defect prediction, an expert opinion

survey was prepared with a purpose of investigating the main factors (criteria) that were

considered important for evaluating alternative SDP methods and weighting the

determined criteria.

The survey was prepared in Google Forms and it consisted of four sections5. In the first

section, there was an introduction part to inform the experts about the research conditions,

with the terms of agreement. In the second section, the participants were asked about

some personal information to be processed for descriptive statistics anonymously. In the

third section, each criterion was presented under the related criteria group given in the

previous section. The experts were expected to evaluate each criterion based on a scale

that consist of six values: ñNot Importantò, ñVery Lowò, ñLowò, ñMediumò, ñHighò, and

ñVery Highò. In addition, the experts were expected to select which of the relevant criteria

might be important in the context of the early phases. In the last section of the survey,

experts could submit a new criterion proposal and rate its importance within a scale of

5 https://tinyurl.com/2e6tvcd5

76

"Very Low" to "Very High". The results of the expert opinion survey were given in

Appendix-3.

The expert opinion survey was sent to twenty identified experts in the field via e-mail. At

the end of the defined period, eight experts participated in the study. The descriptive

information about the participant profiles is given in Table 4.2.

Table 4.2. The profile of the experts

Expert Organization

Type

Title Level of

knowledge

in SDP

(out of 5)

Experience

on SDP

(in years)

h-

index

papers

in

SDP

Years

in

Industry

E1 Government Software

Quality

Manager

3 3 - 5 years 15

E2 University Assistant

Professor

5 6 - 10 years 24 21

E3 University Professor 5 > 20 years 35 34

E4 University Associate

Professor

5 11 - 20

years

25 19

E5 Government Senior

Software

Engineer

(PhD)

5 6 - 10 years 13

E6 Private

Company

Senior

Software

Engineer

(PhD)

5 6 - 10 years 12

E7 University Associate

Professor

4 3 - 5 years 16 10

E8 University Assistant

Professor

4 6 - 10 years 16 20

Figure 4.2 shows the responses of the experts for all the criteria questions. Each response

reflects the opinion of an expert about the importance degree of the related criteria in the

context of software defect prediction. Verbal scales are defined as VH, H, M, L, VL, and

NI that correspond to ñVery Highò, ñHighò, ñMediumò, ñLowò, ñVery Lowò, and ñNot

Importantò, respectively.

77

Figure 4.2. Responses of the experts (E) regarding the criteria

As mentioned before, the expert opinions were gathered about which of the relevant

criteria may be important in the context of ESDP. Based on the answers, we determined

that it would be more appropriate to address the criteria that were selected for ESDP

context. According to the frequency values of each criterion shown in Table 4.3, ñDomain

informationò criterion was eliminated since it has not been selected.

