• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Ana Sayfa
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • Öğe Göster
  •   Ana Sayfa
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

MIWGAN-GP: Missing Data Imputation using Wasserstein Generative Adversarial Nets with Gradient Penalty

Göster/Aç
Ebru Uçgun Ergün Master Thesis (1.443Mb)
Tarih
2022
Yazar
Uçgun Ergün, Ebru
Ambargo Süresi
Acik erisim
Üst veri
Tüm öğe kaydını göster
Özet
The success and dependability of IoT applications are heavily dependent on data quality. Due to hardware problems, synchronization challenges, inconsistent network connectivity, and manual system shutdown, produced data might be missing, erroneous, and noisy. These missing or erroneous values can also occur on health, military and surveillance data and result in errors can also cause important errors in mission systems. If the mission critical system is used in medical domain such missing data problems may affect human life. Hence, Missing values should be imputed appropriately to avoid erroneous judgments in IoT healthcare systems and other critical systems. In addition, Naive Bayes, K-Nearest Neighbors, Decision Tree and XGboost algorithms are applied in the IoT health sector in this study to show in detail the effect of missing data on the outputs of machine learning algorithms. Following that, we compare different strategies for imputing missing data. The classification methods used were compared both for each defect percentage and with different imputation methods. In this thesis, a new GAN-based approach is proposed to complete the missing data. The success of the proposed method is compared with classical imputation methods. Error measurements are realized with four different error metrics. In addition, the success of the proposed GAN-based model is demonstrated by applying different classification methods on the data set filled with this method.
Bağlantı
http://hdl.handle.net/11655/26969
Koleksiyonlar
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [199]
Künye
UÇGUN ERGÜN, E. (2022). MIWGAN-GP: Missing Data Imputation using Wasserstein Generative Adversarial Nets with Gradient Penalty, Hacettepe University
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
İletişim | Geri Bildirim



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

Hakkımızda
Açık Erişim PolitikasıVeri Giriş RehberleriÜyeliklerİletişim

livechat

sherpa/romeo

Göz at

Tüm Açık ArşivBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreDile GöreErişim Şekline GöreDizinleme Kaynağına GöreFonlayan Kuruma GöreAlt Türe GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreDile GöreErişim Şekline GöreDizinleme Kaynağına GöreFonlayan Kuruma GöreAlt Türe Göre

Hesabım

GirişKayıt

İstatistikler

Kullanım İstatistiklerini Göster

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV