• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Endüstri Mühendisliği Bölümü
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Endüstri Mühendisliği Bölümü
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Partıally Observable Markov Decision Process Approach for Clinical Decision Support In Cancer Treatment: Implementation for Colon Cancer

View/Open
10467869.pdf (2.126Mb)
Date
2022
Author
Edizer, Ayşe Sevde
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
The cancer treatment process involves uncertainty by its nature. Since the disease evolves continuously and diagnostic tests used to detect the level of the disease are not totally accurate, the actual state of the disease remains unknown. Therefore, physicians should make treatment decisions in a stochastic environment. This study aims to develop a mathematical model of the history of the colorectal cancer treatment process by using partially observable Markov decision process. To understand the impact of the partially observable environment on modeling the history of the disease, a comparative analysis of the outputs of the partially observable Markov decision process model, in which the patient's actual health status is estimated from the blood carcinoembryonic antigen level change and computed tomography results as observational states, with a basic Markov decision process model that assumes the patient's actual health status is fully known. has been made. The output of the proposed model has been compared to 5-year survival outcomes that come from Surveillance, Epidemiology, and End Results database. A series of hypothetical scenarios have been presented to understand the effectiveness of the model and some limitations encountered in the modeling process have been mentioned along with suggestions for future studies will be made.
URI
http://hdl.handle.net/11655/27093
xmlui.mirage2.itemSummaryView.Collections
  • Endüstri Mühendisliği Bölümü Tez Koleksiyonu [60]
xmlui.dri2xhtml.METS-1.0.item-citation
Edizer, A. S. (2022). A Partially Observable Markov Decision Process Approach For Clinical Decision Support In Cancer Treatment: Implementation For Colon Cancer (thesis).

Related items

Showing items related by title, author, creator and subject.

  • The 1St Baltic Osseointegration Academy And Lithuanian University Of Health Sciences Consensus Conference 2016. Summary And Consensus Statements: Group Ii - Peri-Implantitis Diagnostics And Decision Tree 

    Tözüm, Tolga Fikret; Dursun, Erhan; Galindo-Moreno, Pablo; Juodzbalys, Gintaras; López-Martínez, Jesús; O'Valle, Francisco; Padial-Molina, Miguel; Ramanauskaite, Ausra (2016)
    Introduction The task of Group 2 was to review and update the existing data concerning clinical and genetic methods of diagnostics of peri-implantitis. Special interest was paid to the peri-implant crevicular fluid (PICF) ...
  • Electronic Clinical Decision Support System For Allergic Rhinitis Management: Mask E-Cdss 

    Courbis, Anne-Lise; Murray, Ruth Brigid; Arnavielhe, Sylvie; Caimmi, Davide; Bedbrook, Anna; Van Eerd, Michiel; De Vries, Govert; Dray, Gerard; Agache, Ioana; Morais-Almeida, Mario; Bachert, Claus; Bergmann, Karl Christian; Bosnic-Anticevich, Sinthia; Brozek, Jan; Bucca, Caterina; Camargos, Paulo; Canonica, Giorgio Walter; Carr, Warner; Casale, Thomas; Fonseca, Joao A.; Haahtela, Tari; Kalayci, Omer; Klimek, Ludger; Kuna, Piotr; Kvedariene, Violeta; Larenas Linnemann, Desiree; Lieberman, Phil; Mullol, Joaquim; Ohehir, Robyn; Papadopoulos, Nikolaos; Price, David; Ryan, Dermot; Samolinski, Boleslaw; Simons, F. Estelle; Tomazic, Peter; Triggiani, Massimo; Valiulis, Arunas; Valovirta, Erkka; Wagenmann, Martin; Wickman, Magnus; Yorgancioglu, Arzu; Bousquet, Jean (Wiley, 2018)
    Background: Allergic rhinitis (AR) management has changed in recent years following the switch from the concept of disease severity to the concept of disease control, publication of the AR clinical decision support system ...
  • Comparison Of Decision Trees Used In Data Mining 

    Aksu, G.; Doğan, N. (2019)
    The purpose of this study is to compare decision trees obtained by data mining algorithms used in various areas in recent years according to different criteria. In the study, similar and different aspects of the decision ...
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV