• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recognizing Human Actions from Images with Attention Mechanism

View/Open
cagdasbas_tez.pdf (28.62Mb)
Date
2022-05
Author
Baş, Çağdaş
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Human action recognition in still images is a challenging problem due to the lack of complete motion compared to videos. A single snippet of the ongoing action does not compete with the rich information provided by a video. In this thesis, we explore combining the surrounding information with two different attentional multiple instance mechanisms. The surrounding objects and scene clues are essential in still image action recognition. However, detecting every object is not feasible. For this reason, we employ two different attention mechanisms on possible action related regions proposed by a region proposal network. The first attention layer is the bottom-up attention layer. It learns a spatial attention map to refine each proposal according to ongoing action. It eliminates the background and highlights only the foreground and the pixels related to the action. Our experiments show that the bottom-up attention layer increases the models' accuracy. Visual analysis of the highlighted areas shows that it successfully finds action related objects, scene clues and poselets. The second attention layer is the top-down attention layer. It learns to select which region proposals are related to the ongoing action. There may be multiple action related clues in an image, and the bottom-up attention layer can highlight multiple image regions. However, the selection of related proposals is the top-down attention layers task. It learns to select regions and combines region features to create a single image-level descriptor. Our experiments show that the top-down attention layer successfully selects the related regions to boost the overall performance. Our proposed model can be plugged after any region proposal network and allows end-to-end learning. This way, the network simultaneously learns to propose action related regions, weights each region with an action attention map and selects and combines these regions into an image feature vector. As a result, our model improved the state-of-the-art average precision on four different datasets.
URI
https://hdl.handle.net/11655/33233
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [199]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV