• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Elektrik - Elektronik Mühendisliği Bölümü
  • Elektrik - Elektronik Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Elektrik - Elektronik Mühendisliği Bölümü
  • Elektrik - Elektronik Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hiperspektral Termal Görüntülerde Hedef Tespiti

View/Open
10545225.pdf (18.39Mb)
Date
2023-05-31
Author
Yalçın, Metehan
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
This thesis explores target detection methods using hyperspectral thermal images. Hyperspectral thermal images contain data collected from the long wavelength infrared region of the electromagnetic spectrum. These images provide detailed spectral information about the material properties of the targets, which is useful in target detection. However, changes in the weather conditions of the environment where the targets are located make it challenging to detect the target in long-wave infrared (LWIR) hyperspectral images (HSI). Based on this observation, a scene transfer method is proposed in this thesis which transforms the radiance data in the images where the target is difficult to detect, into the images with higher discrimination and hence, enables the detection of targets in more difficult conditions. In addition, target detection studies are carried out with deep learning-based models on radiance data and it is observed that the long-short-term memory (LSTM) based model gives the best results. Also, as a result of target detection studies performed with signature-based matching methods on the radiance data and on the emissivity data obtained by applying temperature-emissivity transform (TES) to the radiance data, it is observed that the emissivity data perform slightly better. The heating and cooling profiles of the objects during the day are different from each other due to the characteristic radiation properties arising from the thermal inertia and heat capacity of the objects. In order to benefit from the temporal radiation characteristics of the materials, target detection is performed on the temperature profiles of the objects in the proposed method, and on the temporal LWIR HSI's created by combining the radiance data in another proposed method. Finally, dimension reduction techniques are applied on LWIR HSI's, and the wavelengths that are important in detecting targets are determined. In the error analysis based on the difference between the radiation emitted from the objects and the black body radiation at the same temperature as the objects, it is observed that the wavelengths for distinguishing the target objects are similar to the wavelengths found by band selection techniques.
URI
https://hdl.handle.net/11655/33424
xmlui.mirage2.itemSummaryView.Collections
  • Elektrik - Elektronik Mühendisliği Bölümü Tez Koleksiyonu [237]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV