Show simple item record

dc.contributor.advisorAKTAŞ, Güliz
dc.contributor.authorİNCEARIK, Saliha Çağla
dc.date.accessioned2024-04-24T07:55:52Z
dc.date.issued2024-01-18
dc.date.submitted2023-07-18
dc.identifier.citation1. Shamir R, Daugela P, Juodzbalys G. Comparison of Classifications and Indexes for Extraction Socket and Implant Supported Restoration in the Aesthetic Zone: a Systematic Review. J Oral Maxillofac Res. 2022;13(2):e1. 2. Miletic V, Trifković B, Stamenković D, Tango RN, Paravina RD. Effects of staining and artificial aging on optical properties of gingiva-colored resin-based restorative materials. Clin Oral Investig. 2022;26(11):6817-27. 3. Ouzer A. The Evolution and Fabrication of Implant-supported Full-arch Hybrid Prostheses. From Conventional Casted Metal to an All-Ceramic Zirconia. N Y State Dent J. 2015;81(6):44-9. 4. Drago C, Howell K. Concepts for Designing and Fabricating Metal Implant Frameworks for Hybrid Implant Prostheses. Journal of Prosthodontics. 2012;21(5):413-24. 5. White SN, Miklus VG, McLaren EA, Lang LA, Caputo AA. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. The Journal of prosthetic dentistry. 2005;94(2):125-31. 6. Keough BE, Kay HB, Sager RD. A ten-unit all-ceramic anterior fixed partial denture using Y-TZP zirconia. Pract Proced Aesthet Dent. 2006;18(1):37-43; quiz 4. 7. Ahmet Kürşat ÇULHAOĞLU SEÖ, Fatoş TÜRKKAL. POLİETER ETER KETON (PEEK) ve DENTAL KULLANIMI. J Dent Fac Atatürk Uni2019. p. 711-8. 8. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12-9. 9. Wahbi MA, Al Sharief HS, Tayeb H, Bokhari A. Minimally invasive use of coloured composite resin in aesthetic restoration of periodontially involved teeth: Case report. Saudi Dent J. 2013;25(2):83-9. 10. Coachman C, Calamita M. The reconstruction of pink and white esthetics. Int Dent SA. 2010;12(3):88-93. 11. Kubochi K, Komine F, Fushiki R, Yagawa S, Mori S, Matsumura H. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics. J Prosthodont Res. 2017;61(2):149-57. 12. Lanza A, Di Francesco F, De Marco G, Femiano F, Itro A. Clinical Application of the PES/WES Index on Natural Teeth: Case Report and Literature Review. Case Rep Dent. 2017;2017:9659062. 13. Newman MG TH, Klokkevold PR, Carranza FA. . Carranza FA. Carranza's clinical periodontology.: St. Louis, Missouri: Elsevier Saunders; 2011. 14. Rosenstiel SF LM, Fujimoto J. Contemporary fixed prosthodontics: St. Louis, Missouri: Elsevier; 2016. 15. Dummett C. Oral Pigmentation. J Periodontol. 1960;31(5)(5):356-60. 16. Irene Tamblyn R. Gingival Prostheses—A Review. J Can Dent Assoc. 2003;69(2):74-8. 17. Tomar BS, Chandu GS, Singh S, Goutam M. Panacea to lost gingival tissue architecture and spacing: Silicone gingival prosthesis. J Indian Prosthodont Soc. 2016;16(4):400-4. 18. Ajita CO, Anchieta RB, Martin Jr M, Archangelo CM, Gil NR, Bertoncelo CA, et al. Association of fixed partial denture and gingival prosthesis as alternative approach to recover esthetics and function in anterior maxillary region. Journal of Prosthodontic Research. 2012;56(3):222-6. 19. Fürhauser R, Florescu D, Benesch T, Haas R, Mailath G, Watzek G. Evaluation of soft tissue around single-tooth implant crowns: the pink esthetic score. Clinical oral implants research. 2005;16(6):639-44. 20. Belser UC, Grütter L, Vailati F, Bornstein MM, Weber HP, Buser D. Outcome evaluation of early placed maxillary anterior single-tooth implants using objective esthetic criteria: a cross-sectional, retrospective study in 45 patients with a 2- to 4-year follow-up using pink and white esthetic scores. J Periodontol. 2009;80(1):140-51. 21. Fuentealba R, Jofré J. Esthetic failure in implant dentistry. Dental clinics of North America. 2015;59(1):227-46. 22. Wang J, Wu P, Liu HL, Zhang L, Liu LP, Ma CF, et al. Polyetheretherketone versus titanium CAD-CAM framework for implant-supported fixed complete dentures: a retrospective study with up to 5-year follow-up. J Prosthodont Res. 2022;66(2):279-87. 23. Hanawa T. Zirconia versus titanium in dentistry: A review. Dental materials journal. 2020;39(1):24-36. 24. Council on Dental Materials I, Equipment. Biological effects of nickel-containing dental alloys. The Journal of the American Dental Association. 1982;104(4):501-5. 25. Castillo-Oyague R, Osorio R, Osorio E, Sanchez-Aguilera F, Toledano M. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc Res Tech. 2012;75(9):1206-12. 26. Zandparsa R. Digital imaging and fabrication. Dental clinics of North America. 2014;58(1):135-58. 27. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505-11. 28. Sulaiman TA. Materials in digital dentistry-A review. Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry [et al]. 2020;32(2):171-81. 29. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. International journal of dentistry. 2014;2014:783948. 30. Pieralini ARF, Benjamin CM, Ribeiro RF, Scaf G, Adabo GL. The Effect of Coating Patterns with Spinel-Based Investment on the Castability and Porosity of Titanium Cast into Three Phosphate-Bonded Investments. Journal of Prosthodontics. 2010;19(7):517-22. 31. Giordano R, 2nd. A comparison of all-ceramic restorative systems: Part 2. Gen Dent. 2000;48(1):38-40, 3-5. 32. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health. 2019;19(1):134. 33. Reza F, Takahashi H, Iwasaki N, Tamaki Y. Effects of investment type and casting system on permeability and castability of CP titanium. The Journal of prosthetic dentistry. 2010;104(2):114-21. 34. Torsello F, di Torresanto VM, Ercoli C, Cordaro L. Evaluation of the marginal precision of one-piece complete arch titanium frameworks fabricated using five different methods for implant-supported restorations. Clinical oral implants research. 2008;19(8):772-9. 35. Takeuchi Y, Tanaka M, Tanaka J, Kamimoto A, Furuchi M, Imai H. Fabrication systems for restorations and fixed dental prostheses made of titanium and titanium alloys. J Prosthodont Res. 2020;64(1):1-5. 36. Walter M, Reppel PD, Böning K, Freesmeyer WB. Six-year follow-up of titanium and high-gold porcelain-fused-to-metal fixed partial dentures. J Oral Rehabil. 1999;26(2):91-6. 37. Hey J, Beuer F, Bensel T, Boeckler AF. Single crowns with CAD/CAM-fabricated copings from titanium: 6-year clinical results. The Journal of prosthetic dentistry. 2014;112(2):150-4. 38. Jin HY, Teng MH, Wang ZJ, Li X, Liang JY, Wang WX, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. The Journal of prosthetic dentistry. 2019;122(4):383-8. 39. Turp V, Tuncelli B, Sen D, Goller G. Evaluation of hardness and fracture toughness, coupled with microstructural analysis, of zirconia ceramics stored in environments with different pH values. Dental materials journal. 2012;31(6):891-902. 40. Fabbri G, Sorrentino R, Brennan M, Cerutti A. A novel approach to implant screw-retained restorations: adhesive combination between zirconia frameworks and monolithic lithium disilicate. Int J Esthet Dent. 2014;9(4):490-505. 41. Bidra AS, Rungruanganunt P, Gauthier M. Clinical outcomes of full arch fixed implant-supported zirconia prostheses: A systematic review. Eur J Oral Implantol. 2017;10 Suppl 1:35-45. 42. Pozzi A, Holst S, Fabbri G, Tallarico M. Clinical reliability of CAD/CAM cross-arch zirconia bridges on immediately loaded implants placed with computer-assisted/template-guided surgery: a retrospective study with a follow-up between 3 and 5 years. Clinical implant dentistry and related research. 2015;17 Suppl 1:e86-96. 43. Tan JP, Sederstrom D, Polansky JR, McLaren EA, White SN. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. The Journal of prosthetic dentistry. 2012;107(3):163-9. 44. Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int. 2016;42(1 Pt B):1077-85. 45. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dental materials : official publication of the Academy of Dental Materials. 2015;31(10):1180-7. 46. Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-7. 47. Barootchi S, Askar H, Ravidà A, Gargallo-Albiol J, Travan S, Wang HL. Long-term Clinical Outcomes and Cost-Effectiveness of Full-Arch Implant-Supported Zirconia-Based and Metal-Acrylic Fixed Dental Prostheses: A Retrospective Analysis. The International journal of oral & maxillofacial implants. 2020;35(2):395-405. 48. Limmer B, Sanders AE, Reside G, Cooper LF. Complications and patient-centered outcomes with an implant-supported monolithic zirconia fixed dental prosthesis: 1 year results. J Prosthodont. 2014;23(4):267-75. 49. Cho Y, Raigrodski AJ. The rehabilitation of an edentulous mandible with a CAD/CAM zirconia framework and heat-pressed lithium disilicate ceramic crowns: a clinical report. The Journal of prosthetic dentistry. 2014;111(6):443-7. 50. Fischer K, Stenberg T. Prospective 10-year cohort study based on a randomized, controlled trial (RCT) on implant-supported full-arch maxillary prostheses. part II: prosthetic outcomes and maintenance. Clinical implant dentistry and related research. 2013;15(4):498-508. 51. Papaspyridakos P, Lal K. Computer-assisted design/computer-assisted manufacturing zirconia implant fixed complete prostheses: clinical results and technical complications up to 4 years of function. Clinical oral implants research. 2013;24(6):659-65. 52. Kolgeci L, Mericske E, Worni A, Walker P, Katsoulis J, Mericske-Stern R. Technical complications and failures of zirconia-based prostheses supported by implants followed up to 7 years: a case series. The International journal of prosthodontics. 2014;27(6):544-52. 53. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-69. 54. Zoidis P. The all-on-4 modified polyetheretherketone treatment approach: A clinical report. The Journal of prosthetic dentistry. 2018;119(4):516-21. 55. Dawson JH, Hyde B, Hurst M, Harris BT, Lin WS. Polyetherketoneketone (PEKK), a framework material for complete fixed and removable dental prostheses: A clinical report. The Journal of prosthetic dentistry. 2018;119(6):867-72. 56. Zoidis P, Papathanasiou I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. The Journal of prosthetic dentistry. 2016;116(5):637-41. 57. Atsü SS, Aksan ME, Bulut AC. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. The International journal of oral & maxillofacial implants. 2019;34(3):622–30. 58. Maló P, de Araújo Nobre M, Moura Guedes C, Almeida R, Silva A, Sereno N, et al. Short-term report of an ongoing prospective cohort study evaluating the outcome of full-arch implant-supported fixed hybrid polyetheretherketone-acrylic resin prostheses and the All-on-Four concept. Clinical implant dentistry and related research. 2018;20(5):692-702. 59. Sonune SJ, Kumar S, Jadhav MS, Martande S. Gingival-colored Porcelain: A Clinical Report of an Esthetic-prosthetic Paradigm. Int J Appl Basic Med Res. 2017;7(4):275-7. 60. Seibert JS, Salama H. Alveolar ridge preservation and reconstruction. Periodontol 2000. 1996;11:69-84. 61. Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clinical oral implants research. 2012;23 Suppl 5:1-21. 62. Thoma DS, Buranawat B, Hämmerle CH, Held U, Jung RE. Efficacy of soft tissue augmentation around dental implants and in partially edentulous areas: a systematic review. J Clin Periodontol. 2014;41 Suppl 15:S77-91. 63. Deshmukh J, Khatri R, Buguda N, Sakelle D. Merge to emerge - An interdisciplinary approach for management of periodontally compromised orthodontically treated patient. J Indian Soc Periodontol. 2017;21(1):71-5. 64. Polack MA, Mahn DH. The aesthetic replacement of mandibular incisors using an implant-supported fixed partial denture with gingival-colored ceramics. Practical Procedures and Aesthetic Dentistry. 2007;19(10):597. 65. Priest GF. The esthetic challenge of adjacent implants. J Oral Maxillofac Surg. 2007;65(7 Suppl 1):2-12. 66. Alani A, Maglad A, Nohl F. The prosthetic management of gingival aesthetics. Br Dent J. 2011;210(2):63-9. 67. Elzarug YA, Galburt RB, Ali A, Finkelman M, Dam HG. An in vitro comparison of the shear bond strengths of two different gingiva-colored materials bonded to commercially pure titanium and acrylic artificial teeth. J Prosthodont. 2014;23(4):313-9. 68. Braem M, Finger W, Van Doren VE, Lambrechts P, Vanherle G. Mechanical properties and filler fraction of dental composites. Dental materials : official publication of the Academy of Dental Materials. 1989;5(5):346-8. 69. Hashinger DT, Fairhurst CW. Thermal expansion and filler content of composite resins. The Journal of prosthetic dentistry. 1984;52(4):506-10. 70. Zalkind M, Hochman N. Alternative method of conservative esthetic treatment for gingival recession. The Journal of prosthetic dentistry. 1997;77(6):561-3. 71. Coachman C, Garber D, Salama M, Salama H, Cabral G, Calamita M. The incorporation of tissue colored composite and a zirconium abutment to solve an esthetic soft tissue asymmetry. Inside Rest Dent. 2008;4(9):2-5. 72. Reshad M, Cascione D, Aalam AA. Fabrication of the mandibular implant-supported fixed restoration using CAD/CAM technology: a clinical report. The Journal of prosthetic dentistry. 2009;102(5):271-8. 73. Hagiwara Y, Nakajima K, Tsuge T, McGlumphy EA. The use of customized implant frameworks with gingiva-colored composite resin to restore deficient gingival architecture. The Journal of prosthetic dentistry. 2007;97(2):112-7. 74. Paryag AA, Rafeek RN, Mankee MS, Lowe J. Exploring the versatility of gingiva-colored composite. Clin Cosmet Investig Dent. 2016;8:63-9. 75. An HS, Park JM, Park EJ. Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates. J Adv Prosthodont. 2011;3(3):166-71. 76. Koizuka M, Komine F, Blatz MB, Fushiki R, Taguchi K, Matsumura H. The effect of different surface treatments on the bond strength of a gingiva-colored indirect composite veneering material to three implant framework materials. Clinical oral implants research. 2013;24(9):977-84. 77. ATAY MT, AHMET BSO, ÖZEL GS. AĞIZ ORTAMININ SİMÜLASYONU AÇISINDAN TERMAL ve LOADING SİKLUSUN ÖNEMİ. 26. 2023. 78. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999;27(2):89-99. 79. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, et al. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater. 2014;29:295-308. 80. Mair L, Padipatvuthikul P. Variables related to materials and preparing for bond strength testing irrespective of the test protocol. Dental materials : official publication of the Academy of Dental Materials. 2010;26(2):e17-23. 81. Mair LH. Surface permeability and degradation of dental composites resulting from oral temperature changes. Dental materials : official publication of the Academy of Dental Materials. 1989;5(4):247-55. 82. Scherrer SS, Wiskott AH, Coto-Hunziker V, Belser UC. Monotonic flexure and fatigue strength of composites for provisional and definitive restorations. The Journal of prosthetic dentistry. 2003;89(6):579-88. 83. Karaman E, Tuncer D, Karahan S, Ertan A. Farklı adeziv sistemlerin dentine makaslama bağlanma dayanımı: in vitro çalışma. Acta Odontologica Turcica. 2015;32(3):112-5. 84. Placido E, Meira JB, Lima RG, Muench A, de Souza RM, Ballester RY. Shear versus micro-shear bond strength test: a finite element stress analysis. Dental materials : official publication of the Academy of Dental Materials. 2007;23(9):1086-92. 85. Tantbirojn D, Cheng YS, Versluis A, Hodges JS, Douglas WH. Nominal shear or fracture mechanics in the assessment of composite-dentin adhesion? J Dent Res. 2000;79(1):41-8. 86. Karakoç Z, KETANİ MA, Ketani Ş. Mikroskopların çalışma mekanizması ve çeşitleri. Dicle Üniversitesi Veteriner Fakültesi Dergisi. 2016(1):1-6. 87. Hayat M. Principles and techniques of scanning electron microscopy. Biological applications. Volume 1: Van Nostrand Reinhold Company.; 1974. 88. Breschi L, Gobbi P, Falconi M, Mazzotti G, Prati C, Perdigão J. Ultra-morphology of self-etching adhesives on ground enamel: a high resolution SEM study. American journal of dentistry. 2003;16:57A-62A. 89. Gilmore CP. The scanning electron microscope: world of the infinitely small. (No Title). 1972. 90. Xu CS, Hayworth KJ, Lu Z, Grob P, Hassan AM, García-Cerdán JG, et al. Enhanced FIB-SEM systems for large-volume 3D imaging. elife. 2017;6:e25916. 91. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.2021 [Available from: https://www.R-project.org/. 92. Asar Ö, Ilk O, Dag O. Estimating Box-Cox power transformation parameter via goodness-of-fit tests. Communications in Statistics-Simulation and Computation. 2017;46(1):91-105. 93. De Rouck T, Collys K, Cosyn J. Immediate single-tooth implants in the anterior maxilla: a 1-year case cohort study on hard and soft tissue response. J Clin Periodontol. 2008;35(7):649-57. 94. Farah JW, Craig RG. Distribution of stresses in porcelain-fused-to-metal and porcelain jacket crowns. J Dent Res. 1975;54(2):255-61. 95. Ozcan M, Niedermeier W. Clinical study on the reasons for and location of failures of metal-ceramic restorations and survival of repairs. The International journal of prosthodontics. 2002;15(3):299-302. 96. Çulhaoğlu AK, Özkır SE, Şahin V, Yılmaz B, Kılıçarslan MA. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials. J Prosthodont. 2020;29(2):136-41. 97. Zhou L, Qian Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dental materials : official publication of the Academy of Dental Materials. 2014;30(8):e209-15. 98. El Zohairy AA, De Gee AJ, Mohsen MM, Feilzer AJ. Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks. Dental materials : official publication of the Academy of Dental Materials. 2003;19(7):575-83. 99. Uğur M, Kavut İ, Tanrıkut Ö O, Cengiz Ö. Effect of ceramic primers with different chemical contents on the shear bond strength of CAD/CAM ceramics with resin cement after thermal ageing. BMC Oral Health. 2023;23(1):210. 100. Wada T, Koizumi H, Hiraba H, Hanawa T, Matsumura H, Yoneyama T. Effect of luting system with acidic primers on the durability of bonds with Ti-15Mo-5Zr-3Al titanium alloy and its component metals. Dental materials journal. 2023;42(3):418-25. 101. Ivoclar Vivadent: Scientific Documentation SR Nexco Paste June 2012 [Available from: https://ivodent.hu/__docs/793_44eff2d967cd8aa0167b3a56b1ae1f6c.pdf. 102. Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of veneering resins to PEEK: impact of different adhesives. Dental materials journal. 2013;32(3):441-8. 103. Erjavec AK, Črešnar KP, Švab I, Vuherer T, Žigon M, Brunčko M. Determination of Shear Bond Strength between PEEK Composites and Veneering Composites for the Production of Dental Restorations. Materials (Basel). 2023;16(9). 104. Hahnel S, Henrich A, Bürgers R, Handel G, Rosentritt M. Investigation of mechanical properties of modern dental composites after artificial aging for one year. Oper Dent. 2010;35(4):412-9. 105. Kourtis SG. Bond strengths of resin-to-metal bonding systems. The Journal of prosthetic dentistry. 1997;78(2):136-45. 106. Kim JY, Pfeiffer P, Niedermeier W. Effect of laboratory procedures and thermocycling on the shear bond strength of resin-metal bonding systems. The Journal of prosthetic dentistry. 2003;90(2):184-9. 107. Ozcan M, Pfeiffer P, Nergiz I. A brief history and current status of metal-and ceramic surface-conditioning concepts for resin bonding in dentistry. Quintessence international (Berlin, Germany : 1985). 1998;29(11):713-24. 108. Lim BS, Heo SM, Lee YK, Kim CW. Shear bond strength between titanium alloys and composite resin: sandblasting versus fluoride-gel treatment. J Biomed Mater Res B Appl Biomater. 2003;64(1):38-43. 109. Grover A, Sahu SK, Dani A, Shah S, Birajdar K, Gaba T. EVALUATION OF THE EFFECT OF DIFFERENT SURFACE TREATMENTS ON THE BONDING BETWEEN PEEK AND GINGIVAL COMPOSITE RESIN: AN IN VITRO STUDY. Journal of Pharmaceutical Negative Results. 2022:4049-57.tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/34877
dc.description.abstractThe aim of the study is to evaluate the effect of different framework materials currently used in fixed restorations and thermal aging on the shear bond strength of gingiva colored composite materials used to provide pink aesthetics. 90 samples (10x10x2 mm) were prepared from titanium, zirconia and modified PEEK material. After surface polishing, titanium, zirconia was sandblasted with 3 bar, modified PEEK 1.5 bar pressure with 110 µm Al2O3 powders. Samples were divided into three and a separate pink composite system (Gradia Gum, Anaxgum, Nexco) was applied to each of them together with the company's recommended primer and pink opaque. Half of the samples(n=15) were stored in 37oC water for 24 hours and the and the other half was thermally aged with 10000 cycles at 5-55oC. Shear bond strength test was applied to all samples with a cross head speed of 1mm/min in a universal testing device. Failure types were evaluated with a stereomicroscope, and one sample from each group was analyzed with the FIB-SEM device. A 3-way ANOVA test was used for the statistical evaluation of the results, and pairwise comparisons were made since the interaction between the groups was significant. Nexco as the gingiva-colored composite, modified PEEK as the framework material generally showed lower shear bond strength. The variation of the gingiva-colored composite and framework material used has an effect on the shear bond strength. Thermal aging process adversely affected the bond strength in all groups.tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/embargoedAccesstr_TR
dc.subjectdiş eti renkli kompozittr_TR
dc.subjectpembe kompozittr_TR
dc.subjecttitanyumtr_TR
dc.subjectzirkonyatr_TR
dc.subjectmodifiye PEEKtr_TR
dc.subjecttermal yaşlandırmatr_TR
dc.subjectmakaslama bağlanma dayanımıtr_TR
dc.subject.lcshDiş hekimliği. Ağız cerrahisitr_TR
dc.titleÜç Farklı Pembe Kompozitin Makaslama Bağlanma Dayanımına Titanyum, Zirkonya, Modifiye PEEK Alt Yapının ve Termal Yaşlandırmanın Etkisitr_TR
dc.title.alternativeThe Effect of Titanium, Zirconia, Modified PEEK Framework and Thermal Aging on Shear Bond Strength of Three Different Gingiva-Colored Compositestr_TR
dc.typeinfo:eu-repo/semantics/othertr_TR
dc.description.ozetÇalışmanın amacı pembe estetiği sağlamak amacıyla kullanılan pembe kompozit materyallerinin makaslama bağlanma dayanımına, sabit restorasyonlarda güncel olarak kullanılan farklı alt yapı materyallerinin ve termal yaşlandırmanın etkisini değerlendirmektir. Titanyum, zirkonya ve modifiye PEEK materyalinden 10x10x2 mm boyutlarında 90’ar adet alt yapı hazırlanmıştır. Yüzey polisaj işleminden sonra titanyum ve zirkonya 3 bar, modifiye PEEK 1.5 bar basınç ile 110 µm Al2O3 tozları ile kumlanmıştır. Her bir alt yapı grubundaki örnekler üçe ayrılarak üç farklı pembe kompozit sistemi (Gradia Gum, Anaxgum, Nexco) firma önerisi primer ve pembe opak ile beraber uygulanmıştır. Örneklerin yarısı(n=15) 24 saat suda bekletilmiş, diğer yarısı 10000 döngü ile termal olarak yaşlandırılmıştır. Universal test cihazında 1mm/dk kuvvet hızı ile tüm örneklere makaslama bağlanma dayanımı testi uygulanmıştır. Başarısızlık tipleri stereomikroskop ile değerlendirilmiş, her gruptan bir örnek FIB-SEM cihazı ile analiz edilmiştir. Sonuçların istatistiksel değerlendirmesi için 3 yönlü ANOVA testi kullanılmış, gruplar arası etkileşim anlamlı olduğu için ikili karşılaştırmalar yapılmıştır. Pembe kompozit olarak Nexco, alt yapı materyali olarak modifiye PEEK genel olarak daha düşük makaslama bağlanma dayanımı göstermiştir. Kullanılan pembe kompozit ve alt yapı materyalinin değişimi, makaslama bağlanma dayanımı üzerinde etkilidir. Termal yaşlandırma işlemi bütün gruplarda bağlanma dayanımını olumsuz etkilemiştir.tr_TR
dc.contributor.departmentProtetik Diş Tedavisitr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2024-10-27T07:55:52Z
dc.fundingBilimsel Araştırma Projeleri KBtr_TR
dc.subtypedentThesistr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record